-
1
-
-
0041992534
-
Photocatalyst materials for water splitting
-
A. Kudo Photocatalyst materials for water splitting Catal Surv Asia 7 2003 31 38
-
(2003)
Catal Surv Asia
, vol.7
, pp. 31-38
-
-
Kudo, A.1
-
2
-
-
77956838396
-
Photocatalytic water splitting: Recent progress and future challenges
-
K. Maeda, and K. Domen Photocatalytic water splitting: recent progress and future challenges J Phys Chem Lett 1 2010 2655 2661
-
(2010)
J Phys Chem Lett
, vol.1
, pp. 2655-2661
-
-
Maeda, K.1
Domen, K.2
-
5
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
A. Fujishima Electrochemical photolysis of water at a semiconductor electrode Nature 238 1972 37 38
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
-
8
-
-
66749095356
-
Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting
-
X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, and F. Qian et al. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting Nano Lett 9 2009 2331 2336
-
(2009)
Nano Lett
, vol.9
, pp. 2331-2336
-
-
Yang, X.1
Wolcott, A.2
Wang, G.3
Sobo, A.4
Fitzmorris, R.C.5
Qian, F.6
-
9
-
-
0036576931
-
3 as a novel photocatalyst for visible light-induced water splitting
-
3 as a novel photocatalyst for visible light-induced water splitting Catal Lett 80 2002 53 57
-
(2002)
Catal Lett
, vol.80
, pp. 53-57
-
-
Hwang, D.W.1
Kim, J.2
Park, T.J.3
Lee, J.S.4
-
10
-
-
33646048030
-
Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting
-
M. Sathish, B. Viswanathan, and R. Viswanath Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting Int J Hydrogen Energy 31 2006 891 898
-
(2006)
Int J Hydrogen Energy
, vol.31
, pp. 891-898
-
-
Sathish, M.1
Viswanathan, B.2
Viswanath, R.3
-
14
-
-
79952036565
-
Photocatalytic mechanisms of modified titania under visible light
-
Y. Yang, H. Zhong, and C. Tian Photocatalytic mechanisms of modified titania under visible light Res Chem Intermed 1 2010 1 12
-
(2010)
Res Chem Intermed
, vol.1
, pp. 1-12
-
-
Yang, Y.1
Zhong, H.2
Tian, C.3
-
15
-
-
0037123406
-
Visible-light photocatalysis by modified titania
-
H. Kisch, and W. Macyk Visible-light photocatalysis by modified titania ChemPhysChem 3 2002 399 400
-
(2002)
ChemPhysChem
, vol.3
, pp. 399-400
-
-
Kisch, H.1
Macyk, W.2
-
19
-
-
0037905341
-
Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity
-
J.C. Yu, L. Zhang, Z. Zheng, and J. Zhao Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity Chem Mater 15 2003 2280 2286
-
(2003)
Chem Mater
, vol.15
, pp. 2280-2286
-
-
Yu, J.C.1
Zhang, L.2
Zheng, Z.3
Zhao, J.4
-
20
-
-
25144491642
-
Adsorption-driven photocatalytic activity of mesoporous titanium dioxide
-
Y. Shiraishi, N. Saito, and T. Hirai Adsorption-driven photocatalytic activity of mesoporous titanium dioxide Chem Mater 127 2005 12820 12822
-
(2005)
Chem Mater
, vol.127
, pp. 12820-12822
-
-
Shiraishi, Y.1
Saito, N.2
Hirai, T.3
-
24
-
-
0036220345
-
2 with high photocatalytic activity by ultrasound-induced agglomeration
-
2 with high photocatalytic activity by ultrasound-induced agglomeration New J Chem 26 2002 416 420
-
(2002)
New J Chem
, vol.26
, pp. 416-420
-
-
Jimmy, C.Y.1
Zhang, L.2
Yu, J.3
-
26
-
-
4043075572
-
Electrospinning of nanofibers: Reinventing the wheel?
-
D. Li, and Y. Xia Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16 2004 1151 1170
-
(2004)
Adv Mater
, vol.16
, pp. 1151-1170
-
-
Li, D.1
Xia, Y.2
-
27
-
-
74249116923
-
Electrospinning preparation and characterization of cadmium oxide nanofibers
-
A.M. Bazargan, S.M.A. Fateminia, M.E. Ganji, and M.A. Bahrevar Electrospinning preparation and characterization of cadmium oxide nanofibers Chem Eng J 155 2009 523 527
-
(2009)
Chem Eng J
, vol.155
, pp. 523-527
-
-
Bazargan, A.M.1
Fateminia, S.M.A.2
Ganji, M.E.3
Bahrevar, M.A.4
-
28
-
-
77953716483
-
Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes
-
S. Sarkar, J. Zou, J. Liu, C. Xu, L. An, and L. Zhai Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes ACS Appl Mater Interfaces 2 2010 1150 1156
-
(2010)
ACS Appl Mater Interfaces
, vol.2
, pp. 1150-1156
-
-
Sarkar, S.1
Zou, J.2
Liu, J.3
Xu, C.4
An, L.5
Zhai, L.6
-
29
-
-
84862237584
-
Electrospinning versus fibre production methods: From specifics to technological convergence
-
C. Luo, S.D. Stoyanov, E. Stride, E. Pelan, M. Edirisinghe, and Edirisinghe Electrospinning versus fibre production methods: from specifics to technological convergence Chem Soc Rev 41 2012 4708 4735
-
(2012)
Chem Soc Rev
, vol.41
, pp. 4708-4735
-
-
Luo, C.1
Stoyanov, S.D.2
Stride, E.3
Pelan, E.4
Edirisinghe, M.5
Edirisinghe6
-
31
-
-
1642364118
-
Electrospun mesoporous titanium dioxide fibers
-
S. Madhugiri, B. Sun, P.G. Smirniotis, J.P. Ferraris, and J.K.J. Balkus Electrospun mesoporous titanium dioxide fibers Microporous Porous Mater 69 2004 77 83
-
(2004)
Microporous Porous Mater
, vol.69
, pp. 77-83
-
-
Madhugiri, S.1
Sun, B.2
Smirniotis, P.G.3
Ferraris, J.P.4
Balkus, J.K.J.5
-
32
-
-
33745699415
-
2 hollow fibers with mesoporous walls: Sol-gel combined electrospun fabrication and photocatalytic properties
-
2 hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties J Phys Chem B 110 2006 11199 11204
-
(2006)
J Phys Chem B
, vol.110
, pp. 11199-11204
-
-
Zhan, S.1
Chen, D.2
Jiao, X.3
Tao, C.4
-
34
-
-
0035135791
-
Nanostructured fibers via electrospinning
-
M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, and M. Steinhart et al. Nanostructured fibers via electrospinning Adv Mater 13 2001 70 72
-
(2001)
Adv Mater
, vol.13
, pp. 70-72
-
-
Bognitzki, M.1
Czado, W.2
Frese, T.3
Schaper, A.4
Hellwig, M.5
Steinhart, M.6
-
36
-
-
84855396188
-
Electrospinning 3C-SiC mesoporous fibers with high purities and well-controlled structures
-
H. Hou, F. Gao, G. Wei, M. Wang, J. Zheng, and B. Tang et al. Electrospinning 3C-SiC mesoporous fibers with high purities and well-controlled structures Cryst Growth Des 12 2012 536 539
-
(2012)
Cryst Growth des
, vol.12
, pp. 536-539
-
-
Hou, H.1
Gao, F.2
Wei, G.3
Wang, M.4
Zheng, J.5
Tang, B.6
-
38
-
-
78449288259
-
Semiconductor-based photocatalytic hydrogen generation
-
X. Chen, S. Shen, L. Guo, and S.S. Mao Semiconductor-based photocatalytic hydrogen generation Chem Rev 110 2010 6503 6570
-
(2010)
Chem Rev
, vol.110
, pp. 6503-6570
-
-
Chen, X.1
Shen, S.2
Guo, L.3
Mao, S.S.4
-
41
-
-
0037939723
-
Hydrogen production using semiconducting oxide photocatalysts
-
S.C. Moon, Y. Matsumura, M. Kitano, M. Matsuoka, and M. Anpo Hydrogen production using semiconducting oxide photocatalysts Res Chem Intermed 29 2003 233 256
-
(2003)
Res Chem Intermed
, vol.29
, pp. 233-256
-
-
Moon, S.C.1
Matsumura, Y.2
Kitano, M.3
Matsuoka, M.4
Anpo, M.5
-
43
-
-
84861045938
-
2 nanowires with enhanced photocatalytic activity
-
2 nanowires with enhanced photocatalytic activity Nano Lett 24 2012 2567 2571
-
(2012)
Nano Lett
, vol.24
, pp. 2567-2571
-
-
Wu, H.B.1
Hng, H.H.2
Lou, X.W.3
-
44
-
-
35748978177
-
2 prepared by template-free method: Role of interparticle charge transfer
-
2 prepared by template-free method: role of interparticle charge transfer J Phys Chem C 111 2007 15244 15250
-
(2007)
J Phys Chem C
, vol.111
, pp. 15244-15250
-
-
Lakshminarasimhan, N.1
Bae, E.2
Choi, W.3
-
45
-
-
77957607669
-
2 nanofibers: Effects of mesoporosity and interparticle charge transfer
-
2 nanofibers: effects of mesoporosity and interparticle charge transfer J Phys Chem C 114 2010 16475 16480
-
(2010)
J Phys Chem C
, vol.114
, pp. 16475-16480
-
-
Choi, S.K.1
Kim, S.2
Lim, S.K.3
Park, H.4
-
46
-
-
77952684500
-
Porous photocatalysts for advanced water purifications
-
J.H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, and X. Zhao Porous photocatalysts for advanced water purifications J Mater Chem 20 2010 4512 4528
-
(2010)
J Mater Chem
, vol.20
, pp. 4512-4528
-
-
Pan, J.H.1
Dou, H.2
Xiong, Z.3
Xu, C.4
Ma, J.5
Zhao, X.6
|