메뉴 건너뛰기




Volumn 135, Issue , 2014, Pages 229-239

Spectral clustering of high-dimensional data exploiting sparse representation vectors

Author keywords

High dimensional data; Sparse representation; Spectral clustering; Weight matrix

Indexed keywords

VECTORS;

EID: 84897912337     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.12.027     Document Type: Article
Times cited : (48)

References (67)
  • 1
    • 38649125634 scopus 로고    scopus 로고
    • ConSOM. A conceptional self-organizing map model for text clustering
    • Liu Y., Wang X., Wu C. ConSOM. A conceptional self-organizing map model for text clustering. Neurocomputing 2008, 71:857-862.
    • (2008) Neurocomputing , vol.71 , pp. 857-862
    • Liu, Y.1    Wang, X.2    Wu, C.3
  • 2
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Koren Y., Bell R., Volinsky C. Matrix factorization techniques for recommender systems. Computer 2009, 42:30-37.
    • (2009) Computer , vol.42 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 3
    • 78651408940 scopus 로고    scopus 로고
    • Multimedia data mining. state of the art and challenges
    • Bhatt C.A., Kankanhalli M.S. Multimedia data mining. state of the art and challenges. Multimed. Tools Appl. 2011, 51:35-76.
    • (2011) Multimed. Tools Appl. , vol.51 , pp. 35-76
    • Bhatt, C.A.1    Kankanhalli, M.S.2
  • 4
    • 79955630000 scopus 로고    scopus 로고
    • A novel clustering method on time series data
    • Zhang X., Jiaqi L., Yu D., Tingjie L. A novel clustering method on time series data. Expert Syst. Appl. 2011, 38:11891-11900.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11891-11900
    • Zhang, X.1    Jiaqi, L.2    Yu, D.3    Tingjie, L.4
  • 5
    • 84855757607 scopus 로고    scopus 로고
    • Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization
    • Sun J., Chen W., Fang W., Wun X., Xu W. Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization. Eng. Appl. Artif. Intell. 2012, 25:376-391.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , pp. 376-391
    • Sun, J.1    Chen, W.2    Fang, W.3    Wun, X.4    Xu, W.5
  • 6
    • 34347255040 scopus 로고    scopus 로고
    • The challenges of clustering high dimensional data
    • New Directions in Statistical Physics, Springer Berlin Heidelberg
    • M. Steinbach, L. Ertöz, V. Kumar, The challenges of clustering high dimensional data, in: New Directions in Statistical Physics, Springer Berlin Heidelberg, 2004, pp. 273-309.
    • (2004) , pp. 273-309
    • Steinbach, M.1    Ertöz, L.2    Kumar, V.3
  • 7
    • 80052747011 scopus 로고    scopus 로고
    • A feature group weighting method for subspace clustering of high-dimensional data
    • Chen X., Ye Y., Xu X., Huang Z.J. A feature group weighting method for subspace clustering of high-dimensional data. Pattern Recognit. 2012, 45:434-446.
    • (2012) Pattern Recognit. , vol.45 , pp. 434-446
    • Chen, X.1    Ye, Y.2    Xu, X.3    Huang, Z.J.4
  • 8
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U. A tutorial on spectral clustering. Stat. Comput. 2007, 17:395-416.
    • (2007) Stat. Comput. , vol.17 , pp. 395-416
    • von Luxburg, U.1
  • 10
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15:1373-1396.
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 11
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 13
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Wright J., Ma Y., Mairal J., Sapiro G., Huang T.S., Yan S. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98:1031-1044.
    • (2010) Proc. IEEE , vol.98 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.6
  • 14
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D.D., Seung S.H. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401:788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, S.H.2
  • 15
    • 0028561099 scopus 로고
    • Positive matrix factorization. a non-negative factor model with optimal utilization of error estimates of data values
    • Paatero P., Tapper U. Positive matrix factorization. a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5:111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 16
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Lee D.D., Seung H.S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2001, 13:556-562.
    • (2001) Adv. Neural Inf. Process. Syst. , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 79959533573 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with earth mover's distance metric for image analysis
    • Sandler R., Lindenbaum M. Nonnegative matrix factorization with earth mover's distance metric for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33:1590-1602.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , pp. 1590-1602
    • Sandler, R.1    Lindenbaum, M.2
  • 18
    • 84870651762 scopus 로고    scopus 로고
    • MahNMF: Manhattan non-negative matrix factorization
    • arXiv preprint
    • N. Guan, D. Tao, Z. Luo, J.S. Taylor, MahNMF: Manhattan non-negative matrix factorization, arXiv preprint, 2012. http://arXiv:1207.3438.
    • (2012)
    • Guan, N.1    Tao, D.2    Luo, Z.3    Taylor, J.S.4
  • 19
    • 56449106635 scopus 로고    scopus 로고
    • Fast newton-type methods for the least squares nonnegative matrix approximation problem
    • Proceedings of the 2007 SIAM International Conference on Data Mining
    • D. Kim, S. Sra, I.S. Dhillon, Fast newton-type methods for the least squares nonnegative matrix approximation problem, in: Proceedings of the 2007 SIAM International Conference on Data Mining, 2007.
    • (2007)
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 20
    • 84865442402 scopus 로고    scopus 로고
    • Online nonnegative matrix factorization with robust stochastic approximation
    • Guan N., Tao D., Luo Z., Yuan B. Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23:1087-1099.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , pp. 1087-1099
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 21
    • 84887364021 scopus 로고    scopus 로고
    • Robust near-separable nonnegative matrix factorization using linear optimization
    • N. Gillis, R. Luce, Robust near-separable nonnegative matrix factorization using linear optimization, arXiv preprint, 2013. http://arXiv:1302.4385.
    • (2013) arXiv preprint
    • Gillis, N.1    Luce, R.2
  • 22
    • 84862594287 scopus 로고    scopus 로고
    • 1 normalization based on Kullback-Leibler divergence
    • 1 normalization based on Kullback-Leibler divergence. IEEE Trans. Signal Process. 2012, 60:3876-3880.
    • (2012) IEEE Trans. Signal Process. , vol.60 , pp. 3876-3880
    • Sun, M.1    Hamme, H.V.2
  • 23
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5:1457-1469.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 24
    • 84862519707 scopus 로고    scopus 로고
    • A convex model for nonnegative matrix factorization and dimensionality reduction on physical space
    • Esser E., Moller M., Osher S., Sapiro G., Xin J. A convex model for nonnegative matrix factorization and dimensionality reduction on physical space. IEEE Trans. Image Process. 2012, 21:3239-3252.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 3239-3252
    • Esser, E.1    Moller, M.2    Osher, S.3    Sapiro, G.4    Xin, J.5
  • 25
    • 33646528853 scopus 로고    scopus 로고
    • Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification
    • Zafeiriou S., Tefas A., Zafeiriou S., Tefas A. Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification. IEEE Trans. Neural Netw. 2006, 17:683-695.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 683-695
    • Zafeiriou, S.1    Tefas, A.2    Zafeiriou, S.3    Tefas, A.4
  • 26
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • Cai D., He X., Han J., Huang T.S. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33:1548-1560.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 27
    • 79959579027 scopus 로고    scopus 로고
    • Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
    • Guan N., Tao D., Luo Z., Yuan B. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans. Image Process. 2011, 20:2030-2048.
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 2030-2048
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 29
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • Proceedings of the 2005 SIAM International Conference on Data Mining, SIAM
    • C.H. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, in: Proceedings of the 2005 SIAM International Conference on Data Mining, SIAM, 2005, pp. 606-610.
    • (2005) , pp. 606-610
    • Ding, C.H.1    He, X.2    Simon, H.D.3
  • 30
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 31
    • 84872258670 scopus 로고    scopus 로고
    • Manifold regularized multi-task learning for semi-supervised multilabel image classification
    • Luo Y., Tao D., Geng B., Xu C., Maybank S.J. Manifold regularized multi-task learning for semi-supervised multilabel image classification. IEEE Trans. Image Process. 2013, 22:523-536.
    • (2013) IEEE Trans. Image Process. , vol.22 , pp. 523-536
    • Luo, Y.1    Tao, D.2    Geng, B.3    Xu, C.4    Maybank, S.J.5
  • 32
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization. a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization. a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 33
    • 84870191664 scopus 로고    scopus 로고
    • Laplacian sparse coding, hypergraph laplacian sparse coding, and applications
    • Gao S., Tsang I.W.-H., Chia L.-T. Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35:92-104.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 92-104
    • Gao, S.1    Tsang, I.W.-H.2    Chia, L.-T.3
  • 34
    • 84874608810 scopus 로고    scopus 로고
    • Locality constrained dictionary learning for nonlinear dimensionality reduction
    • Zhou Y., Barner K. Locality constrained dictionary learning for nonlinear dimensionality reduction. IEEE Signal Process. Lett. 2013, 20:335-338.
    • (2013) IEEE Signal Process. Lett. , vol.20 , pp. 335-338
    • Zhou, Y.1    Barner, K.2
  • 35
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 3360-3367.
    • (2010) , pp. 3360-3367
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 36
    • 84862575703 scopus 로고    scopus 로고
    • Adaptive hypergraph learning and its application in image classification
    • Yu J., Tao D., Wang M. Adaptive hypergraph learning and its application in image classification. IEEE Trans. Image Process. 2012, 21:3262-3272.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 3262-3272
    • Yu, J.1    Tao, D.2    Wang, M.3
  • 38
    • 84867403495 scopus 로고    scopus 로고
    • Semi-supervised multiview distance metric learning for cartoon synthesis
    • Yu J., Wang M., Tao D. Semi-supervised multiview distance metric learning for cartoon synthesis. IEEE Trans. Image Process. 2012, 21:4636-4648.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 4636-4648
    • Yu, J.1    Wang, M.2    Tao, D.3
  • 39
    • 84867857076 scopus 로고    scopus 로고
    • LF-EME. Local features with elastic manifold embedding for human action recognition
    • Deng X., Liu X., Song M., Cheng J., Bu J., Chen C. LF-EME. Local features with elastic manifold embedding for human action recognition. Neurocomputing 2012, 99:144-153.
    • (2012) Neurocomputing , vol.99 , pp. 144-153
    • Deng, X.1    Liu, X.2    Song, M.3    Cheng, J.4    Bu, J.5    Chen, C.6
  • 40
    • 80054823948 scopus 로고    scopus 로고
    • Complex object correspondence construction in two-dimensional animation
    • Yu J., Liu D., Tao D., Seah H.S. Complex object correspondence construction in two-dimensional animation. IEEE Trans. Image Process. 2011, 20:3257-3269.
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 3257-3269
    • Yu, J.1    Liu, D.2    Tao, D.3    Seah, H.S.4
  • 41
    • 33646365077 scopus 로고    scopus 로고
    • 1-norm near-solution approximates the sparsest near-solution
    • 1-norm near-solution approximates the sparsest near-solution. Commun. Pure Appl. Math. 2006, 59:797-829.
    • (2006) Commun. Pure Appl. Math. , vol.59 , pp. 797-829
    • Donoho, D.L.1
  • 42
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compressed sensing
    • Candès E.J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 2008, 346:589-592.
    • (2008) Comptes Rendus Math. , vol.346 , pp. 589-592
    • Candès, E.J.1
  • 43
    • 84878104490 scopus 로고    scopus 로고
    • Compressive sampling
    • Proceedings of the International Congress of Mathematicians
    • E.J. Candès, Compressive sampling, in: Proceedings of the International Congress of Mathematicians, 2006, pp. 1433-1452.
    • (2006) , pp. 1433-1452
    • Candès, E.J.1
  • 46
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67:301-320.
    • (2005) J. R. Stat. Soc. Ser. B (Stat. Methodol.) , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 48
    • 80053437358 scopus 로고    scopus 로고
    • GoDec: randomized low-rank & sparse matrix decomposition in noisy case
    • Proceedings of the 28th International Conference on Machine Learning, ACM
    • T. Zhou, D. Tao, GoDec: randomized low-rank & sparse matrix decomposition in noisy case, in: Proceedings of the 28th International Conference on Machine Learning, ACM, 2011, pp. 33-40.
    • (2011) , pp. 33-40
    • Zhou, T.1    Tao, D.2
  • 49
    • 79960810210 scopus 로고    scopus 로고
    • Manifold elastic net. a unified framework for sparse dimension reduction
    • Zhou T., Tao D., Wu X. Manifold elastic net. a unified framework for sparse dimension reduction. Data Min. Knowl. Discov. 2011, 22:340-371.
    • (2011) Data Min. Knowl. Discov. , vol.22 , pp. 340-371
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 52
    • 78149478492 scopus 로고    scopus 로고
    • Local sparse representation based classification
    • Proceedings of the 20th International Conference on Pattern Recognition
    • C.-G. Li, J. Guo, H.-G. Zhang, Local sparse representation based classification, in: Proceedings of the 20th International Conference on Pattern Recognition, IEEE, 2010, pp. 649-652.
    • (2010) IEEE , pp. 649-652
    • Li, C.-G.1    Guo, J.2    Zhang, H.-G.3
  • 53
    • 78149343905 scopus 로고    scopus 로고
    • Kernel sparse representation for image classification and face recognition
    • Proceedings of the 11th European Conference on Computer Vision, Part IV
    • S. Gao, I. W.-H. Tsang, L.-T. Chia, Kernel sparse representation for image classification and face recognition, in: Proceedings of the 11th European Conference on Computer Vision, Part IV, 2010, pp. 1-14.
    • (2010) , pp. 1-14
    • Gao, S.1    Tsang, I.W.-H.2    Chia, L.-T.3
  • 54
    • 70450184118 scopus 로고    scopus 로고
    • Sparse subspace clustering
    • Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition
    • E. Elhamifar, R. Vidal, Sparse subspace clustering, in: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009, pp. 2790-2797.
    • (2009) IEEE , pp. 2790-2797
    • Elhamifar, E.1    Vidal, R.2
  • 55
    • 77249136343 scopus 로고    scopus 로고
    • Image clustering via sparse representation
    • Advances in Multimedia Modeling, Springer
    • J. Jiao, X. Mo, C. Shen, Image clustering via sparse representation, in: Advances in Multimedia Modeling, Springer, 2010, pp. 761-766.
    • (2010) , pp. 761-766
    • Jiao, J.1    Mo, X.2    Shen, C.3
  • 56
    • 78049378315 scopus 로고    scopus 로고
    • A nonnegative sparsity induced similarity measure with application to cluster analysis of spam images
    • Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
    • Y. Gao, A. Choudhary, G. Hua, A nonnegative sparsity induced similarity measure with application to cluster analysis of spam images, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, 2010, pp. 5594-5597.
    • (2010) IEEE , pp. 5594-5597
    • Gao, Y.1    Choudhary, A.2    Hua, G.3
  • 57
    • 72749110068 scopus 로고    scopus 로고
    • Semi-supervised learning by sparse representation
    • Proceedings of the SIAM International Conference on Data Mining, SIAM
    • S. Yan, H. Wang, Semi-supervised learning by sparse representation, in: Proceedings of the SIAM International Conference on Data Mining, SIAM, 2009, pp. 792-801.
    • (2009) , pp. 792-801
    • Yan, S.1    Wang, H.2
  • 58
    • 77953177416 scopus 로고    scopus 로고
    • Sparsity induced similarity measure for label propagation
    • Proceedings of IEEE 12th International Conference on Computer Vision
    • H. Cheng, Z. Liu, J. Yang, Sparsity induced similarity measure for label propagation, in: Proceedings of IEEE 12th International Conference on Computer Vision, IEEE, 2009, pp. 317-324.
    • (2009) IEEE , pp. 317-324
    • Cheng, H.1    Liu, Z.2    Yang, J.3
  • 59
    • 84897915890 scopus 로고    scopus 로고
    • UCI machine learning repository, 〈〉
    • K. Bache, M. Lichman, UCI machine learning repository, 〈〉, 2013. http://archive.ics.uci.edu/ml.
    • (2013)
    • Bache, K.1    Lichman, M.2
  • 60
    • 84897912606 scopus 로고    scopus 로고
    • Yale face
    • A. Georghiades, Yale face, 〈〉, 2013. http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
    • (2013)
    • Georghiades, A.1
  • 62
    • 84897916035 scopus 로고    scopus 로고
    • ORL face, AT&T Lab Cambridge, 〈〉
    • ORL face, AT&T Lab Cambridge, 〈〉, 2013. http://www.face-rec.org/databases/.
    • (2013)
  • 63
    • 80052890278 scopus 로고    scopus 로고
    • l1_ls: Simple MATLAB solver for l1-regularized least squares problems
    • Version Beta, 〈〉 (accessed on 10.11.2012).
    • K. Koh, S.-J. Kim, S. Boyd, l1_ls: Simple MATLAB solver for l1-regularized least squares problems, Version Beta, 〈〉, 2008 (accessed on 10.11.2012). http://www.stanford.edu/~boyd/l1_ls/.
    • (2008)
    • Koh, K.1    Kim, S.-J.2    Boyd, S.3
  • 65
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang Z.J. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 1998, 2:283-304.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 283-304
    • Huang, Z.J.1
  • 66
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • Jing L., Ng M.K., Huang Z.J. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data Eng. 2007, 19:1026-1041.
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , pp. 1026-1041
    • Jing, L.1    Ng, M.K.2    Huang, Z.J.3
  • 67
    • 80053561639 scopus 로고    scopus 로고
    • EEW-SC. Enhanced entropy-weighting subspace clustering for high dimensional gene expression data clustering analysis
    • Deng Z., Choi K.-S., Chung F.-L., Wang S. EEW-SC. Enhanced entropy-weighting subspace clustering for high dimensional gene expression data clustering analysis. Appl. Soft Comput. 2011, 11:4798-4806.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 4798-4806
    • Deng, Z.1    Choi, K.-S.2    Chung, F.-L.3    Wang, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.