-
1
-
-
38649125634
-
ConSOM. A conceptional self-organizing map model for text clustering
-
Liu Y., Wang X., Wu C. ConSOM. A conceptional self-organizing map model for text clustering. Neurocomputing 2008, 71:857-862.
-
(2008)
Neurocomputing
, vol.71
, pp. 857-862
-
-
Liu, Y.1
Wang, X.2
Wu, C.3
-
2
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Koren Y., Bell R., Volinsky C. Matrix factorization techniques for recommender systems. Computer 2009, 42:30-37.
-
(2009)
Computer
, vol.42
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
3
-
-
78651408940
-
Multimedia data mining. state of the art and challenges
-
Bhatt C.A., Kankanhalli M.S. Multimedia data mining. state of the art and challenges. Multimed. Tools Appl. 2011, 51:35-76.
-
(2011)
Multimed. Tools Appl.
, vol.51
, pp. 35-76
-
-
Bhatt, C.A.1
Kankanhalli, M.S.2
-
4
-
-
79955630000
-
A novel clustering method on time series data
-
Zhang X., Jiaqi L., Yu D., Tingjie L. A novel clustering method on time series data. Expert Syst. Appl. 2011, 38:11891-11900.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 11891-11900
-
-
Zhang, X.1
Jiaqi, L.2
Yu, D.3
Tingjie, L.4
-
5
-
-
84855757607
-
Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization
-
Sun J., Chen W., Fang W., Wun X., Xu W. Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization. Eng. Appl. Artif. Intell. 2012, 25:376-391.
-
(2012)
Eng. Appl. Artif. Intell.
, vol.25
, pp. 376-391
-
-
Sun, J.1
Chen, W.2
Fang, W.3
Wun, X.4
Xu, W.5
-
6
-
-
34347255040
-
The challenges of clustering high dimensional data
-
New Directions in Statistical Physics, Springer Berlin Heidelberg
-
M. Steinbach, L. Ertöz, V. Kumar, The challenges of clustering high dimensional data, in: New Directions in Statistical Physics, Springer Berlin Heidelberg, 2004, pp. 273-309.
-
(2004)
, pp. 273-309
-
-
Steinbach, M.1
Ertöz, L.2
Kumar, V.3
-
7
-
-
80052747011
-
A feature group weighting method for subspace clustering of high-dimensional data
-
Chen X., Ye Y., Xu X., Huang Z.J. A feature group weighting method for subspace clustering of high-dimensional data. Pattern Recognit. 2012, 45:434-446.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 434-446
-
-
Chen, X.1
Ye, Y.2
Xu, X.3
Huang, Z.J.4
-
8
-
-
34548583274
-
A tutorial on spectral clustering
-
von Luxburg U. A tutorial on spectral clustering. Stat. Comput. 2007, 17:395-416.
-
(2007)
Stat. Comput.
, vol.17
, pp. 395-416
-
-
von Luxburg, U.1
-
10
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15:1373-1396.
-
(2003)
Neural Comput.
, vol.15
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
11
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Silva, V.2
Langford, J.C.3
-
13
-
-
77952717202
-
Sparse representation for computer vision and pattern recognition
-
Wright J., Ma Y., Mairal J., Sapiro G., Huang T.S., Yan S. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98:1031-1044.
-
(2010)
Proc. IEEE
, vol.98
, pp. 1031-1044
-
-
Wright, J.1
Ma, Y.2
Mairal, J.3
Sapiro, G.4
Huang, T.S.5
Yan, S.6
-
14
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Lee D.D., Seung S.H. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401:788-791.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, S.H.2
-
15
-
-
0028561099
-
Positive matrix factorization. a non-negative factor model with optimal utilization of error estimates of data values
-
Paatero P., Tapper U. Positive matrix factorization. a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5:111-126.
-
(1994)
Environmetrics
, vol.5
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
16
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
Lee D.D., Seung H.S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2001, 13:556-562.
-
(2001)
Adv. Neural Inf. Process. Syst.
, vol.13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
17
-
-
79959533573
-
Nonnegative matrix factorization with earth mover's distance metric for image analysis
-
Sandler R., Lindenbaum M. Nonnegative matrix factorization with earth mover's distance metric for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33:1590-1602.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, pp. 1590-1602
-
-
Sandler, R.1
Lindenbaum, M.2
-
18
-
-
84870651762
-
MahNMF: Manhattan non-negative matrix factorization
-
arXiv preprint
-
N. Guan, D. Tao, Z. Luo, J.S. Taylor, MahNMF: Manhattan non-negative matrix factorization, arXiv preprint, 2012. http://arXiv:1207.3438.
-
(2012)
-
-
Guan, N.1
Tao, D.2
Luo, Z.3
Taylor, J.S.4
-
19
-
-
56449106635
-
Fast newton-type methods for the least squares nonnegative matrix approximation problem
-
Proceedings of the 2007 SIAM International Conference on Data Mining
-
D. Kim, S. Sra, I.S. Dhillon, Fast newton-type methods for the least squares nonnegative matrix approximation problem, in: Proceedings of the 2007 SIAM International Conference on Data Mining, 2007.
-
(2007)
-
-
Kim, D.1
Sra, S.2
Dhillon, I.S.3
-
20
-
-
84865442402
-
Online nonnegative matrix factorization with robust stochastic approximation
-
Guan N., Tao D., Luo Z., Yuan B. Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23:1087-1099.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, pp. 1087-1099
-
-
Guan, N.1
Tao, D.2
Luo, Z.3
Yuan, B.4
-
21
-
-
84887364021
-
Robust near-separable nonnegative matrix factorization using linear optimization
-
N. Gillis, R. Luce, Robust near-separable nonnegative matrix factorization using linear optimization, arXiv preprint, 2013. http://arXiv:1302.4385.
-
(2013)
arXiv preprint
-
-
Gillis, N.1
Luce, R.2
-
22
-
-
84862594287
-
1 normalization based on Kullback-Leibler divergence
-
1 normalization based on Kullback-Leibler divergence. IEEE Trans. Signal Process. 2012, 60:3876-3880.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, pp. 3876-3880
-
-
Sun, M.1
Hamme, H.V.2
-
23
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
Hoyer P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5:1457-1469.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
24
-
-
84862519707
-
A convex model for nonnegative matrix factorization and dimensionality reduction on physical space
-
Esser E., Moller M., Osher S., Sapiro G., Xin J. A convex model for nonnegative matrix factorization and dimensionality reduction on physical space. IEEE Trans. Image Process. 2012, 21:3239-3252.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 3239-3252
-
-
Esser, E.1
Moller, M.2
Osher, S.3
Sapiro, G.4
Xin, J.5
-
25
-
-
33646528853
-
Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification
-
Zafeiriou S., Tefas A., Zafeiriou S., Tefas A. Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification. IEEE Trans. Neural Netw. 2006, 17:683-695.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, pp. 683-695
-
-
Zafeiriou, S.1
Tefas, A.2
Zafeiriou, S.3
Tefas, A.4
-
26
-
-
79959532395
-
Graph regularized nonnegative matrix factorization for data representation
-
Cai D., He X., Han J., Huang T.S. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33:1548-1560.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, pp. 1548-1560
-
-
Cai, D.1
He, X.2
Han, J.3
Huang, T.S.4
-
27
-
-
79959579027
-
Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
-
Guan N., Tao D., Luo Z., Yuan B. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans. Image Process. 2011, 20:2030-2048.
-
(2011)
IEEE Trans. Image Process.
, vol.20
, pp. 2030-2048
-
-
Guan, N.1
Tao, D.2
Luo, Z.3
Yuan, B.4
-
28
-
-
84861310732
-
Constrained nonnegative matrix factorization for image representation
-
Liu H., Wu Z., Li X., Cai D., Huang T.S. Constrained nonnegative matrix factorization for image representation. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34:1299-1311.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, pp. 1299-1311
-
-
Liu, H.1
Wu, Z.2
Li, X.3
Cai, D.4
Huang, T.S.5
-
29
-
-
33749255098
-
On the equivalence of nonnegative matrix factorization and spectral clustering
-
Proceedings of the 2005 SIAM International Conference on Data Mining, SIAM
-
C.H. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, in: Proceedings of the 2005 SIAM International Conference on Data Mining, SIAM, 2005, pp. 606-610.
-
(2005)
, pp. 606-610
-
-
Ding, C.H.1
He, X.2
Simon, H.D.3
-
30
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
31
-
-
84872258670
-
Manifold regularized multi-task learning for semi-supervised multilabel image classification
-
Luo Y., Tao D., Geng B., Xu C., Maybank S.J. Manifold regularized multi-task learning for semi-supervised multilabel image classification. IEEE Trans. Image Process. 2013, 22:523-536.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, pp. 523-536
-
-
Luo, Y.1
Tao, D.2
Geng, B.3
Xu, C.4
Maybank, S.J.5
-
32
-
-
33750729556
-
Manifold regularization. a geometric framework for learning from labeled and unlabeled examples
-
Belkin M., Niyogi P., Sindhwani V. Manifold regularization. a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
33
-
-
84870191664
-
Laplacian sparse coding, hypergraph laplacian sparse coding, and applications
-
Gao S., Tsang I.W.-H., Chia L.-T. Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35:92-104.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 92-104
-
-
Gao, S.1
Tsang, I.W.-H.2
Chia, L.-T.3
-
34
-
-
84874608810
-
Locality constrained dictionary learning for nonlinear dimensionality reduction
-
Zhou Y., Barner K. Locality constrained dictionary learning for nonlinear dimensionality reduction. IEEE Signal Process. Lett. 2013, 20:335-338.
-
(2013)
IEEE Signal Process. Lett.
, vol.20
, pp. 335-338
-
-
Zhou, Y.1
Barner, K.2
-
35
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
-
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 3360-3367.
-
(2010)
, pp. 3360-3367
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
-
36
-
-
84862575703
-
Adaptive hypergraph learning and its application in image classification
-
Yu J., Tao D., Wang M. Adaptive hypergraph learning and its application in image classification. IEEE Trans. Image Process. 2012, 21:3262-3272.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 3262-3272
-
-
Yu, J.1
Tao, D.2
Wang, M.3
-
37
-
-
84884922012
-
Multiview vector-valued manifold regularization for multilabel image classification
-
Luo Y., Tao D., Member S., Xu C., Xu C., Liu H., Wen Y. Multiview vector-valued manifold regularization for multilabel image classification. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24:709-722.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, pp. 709-722
-
-
Luo, Y.1
Tao, D.2
Member, S.3
Xu, C.4
Xu, C.5
Liu, H.6
Wen, Y.7
-
38
-
-
84867403495
-
Semi-supervised multiview distance metric learning for cartoon synthesis
-
Yu J., Wang M., Tao D. Semi-supervised multiview distance metric learning for cartoon synthesis. IEEE Trans. Image Process. 2012, 21:4636-4648.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 4636-4648
-
-
Yu, J.1
Wang, M.2
Tao, D.3
-
39
-
-
84867857076
-
LF-EME. Local features with elastic manifold embedding for human action recognition
-
Deng X., Liu X., Song M., Cheng J., Bu J., Chen C. LF-EME. Local features with elastic manifold embedding for human action recognition. Neurocomputing 2012, 99:144-153.
-
(2012)
Neurocomputing
, vol.99
, pp. 144-153
-
-
Deng, X.1
Liu, X.2
Song, M.3
Cheng, J.4
Bu, J.5
Chen, C.6
-
40
-
-
80054823948
-
Complex object correspondence construction in two-dimensional animation
-
Yu J., Liu D., Tao D., Seah H.S. Complex object correspondence construction in two-dimensional animation. IEEE Trans. Image Process. 2011, 20:3257-3269.
-
(2011)
IEEE Trans. Image Process.
, vol.20
, pp. 3257-3269
-
-
Yu, J.1
Liu, D.2
Tao, D.3
Seah, H.S.4
-
41
-
-
33646365077
-
1-norm near-solution approximates the sparsest near-solution
-
1-norm near-solution approximates the sparsest near-solution. Commun. Pure Appl. Math. 2006, 59:797-829.
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, pp. 797-829
-
-
Donoho, D.L.1
-
42
-
-
42649140570
-
The restricted isometry property and its implications for compressed sensing
-
Candès E.J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 2008, 346:589-592.
-
(2008)
Comptes Rendus Math.
, vol.346
, pp. 589-592
-
-
Candès, E.J.1
-
43
-
-
84878104490
-
Compressive sampling
-
Proceedings of the International Congress of Mathematicians
-
E.J. Candès, Compressive sampling, in: Proceedings of the International Congress of Mathematicians, 2006, pp. 1433-1452.
-
(2006)
, pp. 1433-1452
-
-
Candès, E.J.1
-
48
-
-
80053437358
-
GoDec: randomized low-rank & sparse matrix decomposition in noisy case
-
Proceedings of the 28th International Conference on Machine Learning, ACM
-
T. Zhou, D. Tao, GoDec: randomized low-rank & sparse matrix decomposition in noisy case, in: Proceedings of the 28th International Conference on Machine Learning, ACM, 2011, pp. 33-40.
-
(2011)
, pp. 33-40
-
-
Zhou, T.1
Tao, D.2
-
49
-
-
79960810210
-
Manifold elastic net. a unified framework for sparse dimension reduction
-
Zhou T., Tao D., Wu X. Manifold elastic net. a unified framework for sparse dimension reduction. Data Min. Knowl. Discov. 2011, 22:340-371.
-
(2011)
Data Min. Knowl. Discov.
, vol.22
, pp. 340-371
-
-
Zhou, T.1
Tao, D.2
Wu, X.3
-
50
-
-
79955371363
-
Graph regularized sparse coding for image representation
-
Zheng M., Bu J., Chen C., Wang C., Zhang L., Qiu G., Cai D. Graph regularized sparse coding for image representation. IEEE Trans. Image Process. 2011, 20:1327-1336.
-
(2011)
IEEE Trans. Image Process.
, vol.20
, pp. 1327-1336
-
-
Zheng, M.1
Bu, J.2
Chen, C.3
Wang, C.4
Zhang, L.5
Qiu, G.6
Cai, D.7
-
51
-
-
61549128441
-
Robust face recognition via sparse representation
-
Wright J., Yang A.Y., Ganesh A., Sastry S.S., Ma Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31:210-227.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, pp. 210-227
-
-
Wright, J.1
Yang, A.Y.2
Ganesh, A.3
Sastry, S.S.4
Ma, Y.5
-
52
-
-
78149478492
-
Local sparse representation based classification
-
Proceedings of the 20th International Conference on Pattern Recognition
-
C.-G. Li, J. Guo, H.-G. Zhang, Local sparse representation based classification, in: Proceedings of the 20th International Conference on Pattern Recognition, IEEE, 2010, pp. 649-652.
-
(2010)
IEEE
, pp. 649-652
-
-
Li, C.-G.1
Guo, J.2
Zhang, H.-G.3
-
53
-
-
78149343905
-
Kernel sparse representation for image classification and face recognition
-
Proceedings of the 11th European Conference on Computer Vision, Part IV
-
S. Gao, I. W.-H. Tsang, L.-T. Chia, Kernel sparse representation for image classification and face recognition, in: Proceedings of the 11th European Conference on Computer Vision, Part IV, 2010, pp. 1-14.
-
(2010)
, pp. 1-14
-
-
Gao, S.1
Tsang, I.W.-H.2
Chia, L.-T.3
-
54
-
-
70450184118
-
Sparse subspace clustering
-
Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition
-
E. Elhamifar, R. Vidal, Sparse subspace clustering, in: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009, pp. 2790-2797.
-
(2009)
IEEE
, pp. 2790-2797
-
-
Elhamifar, E.1
Vidal, R.2
-
55
-
-
77249136343
-
Image clustering via sparse representation
-
Advances in Multimedia Modeling, Springer
-
J. Jiao, X. Mo, C. Shen, Image clustering via sparse representation, in: Advances in Multimedia Modeling, Springer, 2010, pp. 761-766.
-
(2010)
, pp. 761-766
-
-
Jiao, J.1
Mo, X.2
Shen, C.3
-
56
-
-
78049378315
-
A nonnegative sparsity induced similarity measure with application to cluster analysis of spam images
-
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
-
Y. Gao, A. Choudhary, G. Hua, A nonnegative sparsity induced similarity measure with application to cluster analysis of spam images, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, 2010, pp. 5594-5597.
-
(2010)
IEEE
, pp. 5594-5597
-
-
Gao, Y.1
Choudhary, A.2
Hua, G.3
-
57
-
-
72749110068
-
Semi-supervised learning by sparse representation
-
Proceedings of the SIAM International Conference on Data Mining, SIAM
-
S. Yan, H. Wang, Semi-supervised learning by sparse representation, in: Proceedings of the SIAM International Conference on Data Mining, SIAM, 2009, pp. 792-801.
-
(2009)
, pp. 792-801
-
-
Yan, S.1
Wang, H.2
-
58
-
-
77953177416
-
Sparsity induced similarity measure for label propagation
-
Proceedings of IEEE 12th International Conference on Computer Vision
-
H. Cheng, Z. Liu, J. Yang, Sparsity induced similarity measure for label propagation, in: Proceedings of IEEE 12th International Conference on Computer Vision, IEEE, 2009, pp. 317-324.
-
(2009)
IEEE
, pp. 317-324
-
-
Cheng, H.1
Liu, Z.2
Yang, J.3
-
59
-
-
84897915890
-
-
UCI machine learning repository, 〈〉
-
K. Bache, M. Lichman, UCI machine learning repository, 〈〉, 2013. http://archive.ics.uci.edu/ml.
-
(2013)
-
-
Bache, K.1
Lichman, M.2
-
60
-
-
84897912606
-
-
Yale face
-
A. Georghiades, Yale face, 〈〉, 2013. http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
-
(2013)
-
-
Georghiades, A.1
-
62
-
-
84897916035
-
-
ORL face, AT&T Lab Cambridge, 〈〉
-
ORL face, AT&T Lab Cambridge, 〈〉, 2013. http://www.face-rec.org/databases/.
-
(2013)
-
-
-
63
-
-
80052890278
-
l1_ls: Simple MATLAB solver for l1-regularized least squares problems
-
Version Beta, 〈〉 (accessed on 10.11.2012).
-
K. Koh, S.-J. Kim, S. Boyd, l1_ls: Simple MATLAB solver for l1-regularized least squares problems, Version Beta, 〈〉, 2008 (accessed on 10.11.2012). http://www.stanford.edu/~boyd/l1_ls/.
-
(2008)
-
-
Koh, K.1
Kim, S.-J.2
Boyd, S.3
-
65
-
-
27144536001
-
Extensions to the k-means algorithm for clustering large data sets with categorical values
-
Huang Z.J. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 1998, 2:283-304.
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, pp. 283-304
-
-
Huang, Z.J.1
-
66
-
-
34347228671
-
An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
-
Jing L., Ng M.K., Huang Z.J. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data Eng. 2007, 19:1026-1041.
-
(2007)
IEEE Trans. Knowl. Data Eng.
, vol.19
, pp. 1026-1041
-
-
Jing, L.1
Ng, M.K.2
Huang, Z.J.3
-
67
-
-
80053561639
-
EEW-SC. Enhanced entropy-weighting subspace clustering for high dimensional gene expression data clustering analysis
-
Deng Z., Choi K.-S., Chung F.-L., Wang S. EEW-SC. Enhanced entropy-weighting subspace clustering for high dimensional gene expression data clustering analysis. Appl. Soft Comput. 2011, 11:4798-4806.
-
(2011)
Appl. Soft Comput.
, vol.11
, pp. 4798-4806
-
-
Deng, Z.1
Choi, K.-S.2
Chung, F.-L.3
Wang, S.4
|