-
1
-
-
41549083671
-
Fractional Cable models for spiny neuronal dendrites
-
[Article ID 128103]
-
Henry B.I., Langlands T.A.M., Wearne S.L. Fractional Cable models for spiny neuronal dendrites. Phys Rev Lett 2008, 100(12):4. [Article ID 128103].
-
(2008)
Phys Rev Lett
, vol.100
, Issue.12
, pp. 4
-
-
Henry, B.I.1
Langlands, T.A.M.2
Wearne, S.L.3
-
3
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 2000, 339:1-77.
-
(2000)
Phys Rep
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
5
-
-
0000717432
-
Discretized fractional calculus
-
Lubich C. Discretized fractional calculus. SIAM J Math Anal 1986, 17:704-719.
-
(1986)
SIAM J Math Anal
, vol.17
, pp. 704-719
-
-
Lubich, C.1
-
8
-
-
35349007940
-
Numerical studies for a multi-order fractional differential equation
-
Sweilam N.H., Khader M.M., Al-Bar R.F. Numerical studies for a multi-order fractional differential equation. Phys Lett A 2007, 371:26-33.
-
(2007)
Phys Lett A
, vol.371
, pp. 26-33
-
-
Sweilam, N.H.1
Khader, M.M.2
Al-Bar, R.F.3
-
9
-
-
79251601340
-
Numerical solution of two-sided space-fractional wave equation using finite difference method
-
Sweilam N.H., Khader M.M., Nagy A.M. Numerical solution of two-sided space-fractional wave equation using finite difference method. J Comput Appl Math 2011, 235:2832-2841.
-
(2011)
J Comput Appl Math
, vol.235
, pp. 2832-2841
-
-
Sweilam, N.H.1
Khader, M.M.2
Nagy, A.M.3
-
10
-
-
84872599320
-
On the stability analysis of weighted average finite difference methods for fractional wave equation
-
Sweilam N.H., Khader M.M., Adel M. On the stability analysis of weighted average finite difference methods for fractional wave equation. J Fract Differential Cal 2012, 2(2):17-25.
-
(2012)
J Fract Differential Cal
, vol.2
, Issue.2
, pp. 17-25
-
-
Sweilam, N.H.1
Khader, M.M.2
Adel, M.3
-
11
-
-
85162538951
-
Crank-Nicolson finite difference method for solving time-fractional diffusion equation
-
Sweilam N.H., Khader M.M., Mahdy A.M.S. Crank-Nicolson finite difference method for solving time-fractional diffusion equation. J Fract Cal Appl 2012, 2(2):1-9.
-
(2012)
J Fract Cal Appl
, vol.2
, Issue.2
, pp. 1-9
-
-
Sweilam, N.H.1
Khader, M.M.2
Mahdy, A.M.S.3
-
12
-
-
79960376707
-
A Chebyshev pseudo-spectral method for solving fractional order integro-differential equations
-
Sweilam N.H., Khader M.M. A Chebyshev pseudo-spectral method for solving fractional order integro-differential equations. ANZIAM 2010, 51:464-475.
-
(2010)
ANZIAM
, vol.51
, pp. 464-475
-
-
Sweilam, N.H.1
Khader, M.M.2
-
13
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
-
Yuste S.B., Acedo L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J Numer Anal 2005, 42:1862-1874.
-
(2005)
SIAM J Numer Anal
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
14
-
-
0026124343
-
Fractional-order state equations for the control of viscoelastic damped structures
-
Bagley R.L., Calico R.A. Fractional-order state equations for the control of viscoelastic damped structures. J Guid Control Dyn 1999, 14(2):304-311.
-
(1999)
J Guid Control Dyn
, vol.14
, Issue.2
, pp. 304-311
-
-
Bagley, R.L.1
Calico, R.A.2
-
16
-
-
0034113992
-
The fractional-order governing equation of Le'vy motion
-
Benson D.A., Wheatcraft S.W., Meerschaert M.M. The fractional-order governing equation of Le'vy motion. Water Resour Res 2000, 36(6):1413-1424.
-
(2000)
Water Resour Res
, vol.36
, Issue.6
, pp. 1413-1424
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
17
-
-
79959753668
-
Image processing by means of a linear integro-differential equations
-
Cuesta E., Finat J. Image processing by means of a linear integro-differential equations. IASTED 2003, 438-442.
-
(2003)
IASTED
, pp. 438-442
-
-
Cuesta, E.1
Finat, J.2
-
19
-
-
70350663279
-
Fractional Cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions
-
Langlands T.A.M., Henry B.I., Wearne S.L. Fractional Cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J Math Biol 2009, 59(6):761-808.
-
(2009)
J Math Biol
, vol.59
, Issue.6
, pp. 761-808
-
-
Langlands, T.A.M.1
Henry, B.I.2
Wearne, S.L.3
-
20
-
-
78649919287
-
Stability and convergence of two new implicit numerical methods for the fractional Cable equation
-
[Article ID 01109]
-
Liu F., Yang Q., Turner I. Stability and convergence of two new implicit numerical methods for the fractional Cable equation. J Comput Nonlinear Dyn 2011, 6(1):7. [Article ID 01109].
-
(2011)
J Comput Nonlinear Dyn
, vol.6
, Issue.1
, pp. 7
-
-
Liu, F.1
Yang, Q.2
Turner, I.3
-
21
-
-
84878576090
-
An explicit numerical method for the fractional Cable equation
-
[Article ID 231920]
-
Quintana-Murillo J., Yuste S.B. An explicit numerical method for the fractional Cable equation. Int J Differential Equations 2011, 2011:12. [Article ID 231920].
-
(2011)
Int J Differential Equations
, vol.2011
, pp. 12
-
-
Quintana-Murillo, J.1
Yuste, S.B.2
-
22
-
-
0003089278
-
Core conductor theory and Cable properties of neurons
-
American Physiological Society, Bethesda (MD), [chapter 3]
-
Rall W. Core conductor theory and Cable properties of neurons. Handbook of physiology:the nervous system 1977, vol. 1:39-97. American Physiological Society, Bethesda (MD), [chapter 3].
-
(1977)
Handbook of physiology:the nervous system
, vol.1
, pp. 39-97
-
-
Rall, W.1
-
24
-
-
4544380424
-
A numerical method for an integro-differential equation with memory in Banach spaces: qualitative properties
-
Palencia E., Cuesta E. A numerical method for an integro-differential equation with memory in Banach spaces: qualitative properties. SIAM J Numer Anal 2003, 41:1232-1241.
-
(2003)
SIAM J Numer Anal
, vol.41
, pp. 1232-1241
-
-
Palencia, E.1
Cuesta, E.2
|