-
1
-
-
17044387386
-
Hsp70 chaperones. Cellular functions and molecular mechanism
-
Mayer MP, Bukau B. 2005. Hsp70 chaperones. Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62:670-684. http://dx.doi.org/10.1007/s00018-004-4464-6.
-
(2005)
Cell. Mol. Life Sci.
, vol.62
, pp. 670-684
-
-
Mayer, M.P.1
Bukau, B.2
-
2
-
-
35748962910
-
The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions
-
Genevaux P, Georgopoulos C, Kelley WL. 2007. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66:840-857. http://dx.doi.org/10.1111/j.1365-2958.2007.05961.x.
-
(2007)
Mol. Microbiol.
, vol.66
, pp. 840-857
-
-
Genevaux, P.1
Georgopoulos, C.2
Kelley, W.L.3
-
3
-
-
77954947810
-
The HSP70 chaperone machinery: J proteins as drivers of functional specificity
-
Kampinga HH, Craig EA. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11: 579-592. http://dx.doi.org/10.1038/nrm2941.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 579-592
-
-
Kampinga, H.H.1
Craig, E.A.2
-
4
-
-
79960652801
-
Molecular chaperones in protein folding and proteostasis
-
Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324-332. http://dx.doi.org/10.1038/nature10317.
-
(2011)
Nature
, vol.475
, pp. 324-332
-
-
Hartl, F.U.1
Bracher, A.2
Hayer-Hartl, M.3
-
5
-
-
0025730978
-
Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK
-
Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M. 1991. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. U. S. A. 88:2874-2878. http://dx.doi.org/10.1073/pnas.88.7.2874.
-
(1991)
Proc. Natl. Acad. Sci. U. S. A.
, vol.88
, pp. 2874-2878
-
-
Liberek, K.1
Marszalek, J.2
Ang, D.3
Georgopoulos, C.4
Zylicz, M.5
-
6
-
-
0026596223
-
Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding
-
Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683-689. http://dx.doi.org/10.1038/356683a0.
-
(1992)
Nature
, vol.356
, pp. 683-689
-
-
Langer, T.1
Lu, C.2
Echols, H.3
Flanagan, J.4
Hayer, M.K.5
Hartl, F.U.6
-
7
-
-
0028151509
-
The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ and GrpE
-
Szabo A, Langer T, Schröder H, Flanagan J, Bukau B, Hartl FU. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ and GrpE. Proc. Natl. Acad. Sci. U. S. A. 91:10345-10349. http://dx.doi.org/10.1073/pnas.91.22.10345.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 10345-10349
-
-
Szabo, A.1
Langer, T.2
Schröder, H.3
Flanagan, J.4
Bukau, B.5
Hartl, F.U.6
-
8
-
-
84861745331
-
Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability. Implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function
-
Suzuki H, Ikeda A, Tsuchimoto S, Adachi K, Noguchi A, Fukumori Y, Kanemori M. 2012. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability. Implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function. J. Biol. Chem. 287:19275-19283. http://dx.doi.org/10.1074/jbc.M111.331470.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 19275-19283
-
-
Suzuki, H.1
Ikeda, A.2
Tsuchimoto, S.3
Adachi, K.4
Noguchi, A.5
Fukumori, Y.6
Kanemori, M.7
-
9
-
-
0023240043
-
The heat shock response of E. coli is regulated by changes in the concentration of σ32
-
Straus DB, Walter WA, Gross CA. 1987. The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329:348-351. http://dx.doi.org/10.1038/329348a0.
-
(1987)
Nature
, vol.329
, pp. 348-351
-
-
Straus, D.B.1
Walter, W.A.2
Gross, C.A.3
-
10
-
-
0001897486
-
The heat shock response: regulation and function
-
Storz G, Hengge-Aronis R (ed). ASM Press, Washington, DC.
-
Yura T, Kanemori M, Morita MT. 2000. The heat shock response: regulation and function, p 3-18. In Storz G, Hengge-Aronis R (ed), Bacterial stress responses. ASM Press, Washington, DC.
-
(2000)
Bacterial stress responses
, pp. 3-18
-
-
Yura, T.1
Kanemori, M.2
Morita, M.T.3
-
11
-
-
51949087754
-
Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response
-
Guisbert E, Yura T, Rhodius VA, Gross CA. 2008. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol. Mol. Biol. Rev. 72:545-554. http://dx.doi.org/10.1128/MMBR.00007-08.
-
(2008)
Microbiol. Mol. Biol. Rev.
, vol.72
, pp. 545-554
-
-
Guisbert, E.1
Yura, T.2
Rhodius, V.A.3
Gross, C.A.4
-
12
-
-
0344824655
-
Proteolysis in bacterial regulatory circuits
-
Gottesman S. 2003. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19:565-587. http://dx.doi.org/10.1146/annurev.cellbio.19.110701.153228.
-
(2003)
Annu. Rev. Cell Dev. Biol.
, vol.19
, pp. 565-587
-
-
Gottesman, S.1
-
13
-
-
0028985616
-
Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB
-
Herman C, Thévenet D, D'Ari R, Bouloc P. 1995. Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. U. S. A. 92:3516-3520. http://dx.doi.org/10.1073/pnas.92.8.3516.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, pp. 3516-3520
-
-
Herman, C.1
Thévenet, D.2
D'Ari, R.3
Bouloc, P.4
-
14
-
-
0029060112
-
Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32
-
Tomoyasu T, Gamer J, Bukau B, Kanemori M, Mori H, Rutman AJ, Oppenheim AB, Yura T, Yamanaka K, Niki H, Hiraga S, Ogura T. 1995. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32. EMBO J. 14: 2551-2560.
-
(1995)
EMBO J.
, vol.14
, pp. 2551-2560
-
-
Tomoyasu, T.1
Gamer, J.2
Bukau, B.3
Kanemori, M.4
Mori, H.5
Rutman, A.J.6
Oppenheim, A.B.7
Yura, T.8
Yamanaka, K.9
Niki, H.10
Hiraga, S.11
Ogura, T.12
-
15
-
-
0030613795
-
Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of σ32 and abnormal proteins in Escherichia coli
-
Kanemori M, Nishihara K, Yanagi H, Yura T. 1997. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of σ32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179: 7219-7225.
-
(1997)
J. Bacteriol.
, vol.179
, pp. 7219-7225
-
-
Kanemori, M.1
Nishihara, K.2
Yanagi, H.3
Yura, T.4
-
16
-
-
0033618309
-
Marked instability of the σ32 heat shock transcription factor at high temperature. Implications for heat shock regulation
-
Kanemori M, Yanagi H, Yura T. 1999. Marked instability of the σ32 heat shock transcription factor at high temperature. Implications for heat shock regulation. J. Biol. Chem. 274:22002-22007.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 22002-22007
-
-
Kanemori, M.1
Yanagi, H.2
Yura, T.3
-
17
-
-
0024584414
-
Modulation of stability of the Escherichia coli heat shock regulatory factor σ32
-
Tilly K, Spence J, Georgopoulos C. 1989. Modulation of stability of the Escherichia coli heat shock regulatory factor σ32. J. Bacteriol. 171:1585-1589.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 1585-1589
-
-
Tilly, K.1
Spence, J.2
Georgopoulos, C.3
-
18
-
-
0025632973
-
DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32
-
Straus D, Walter W, Gross CA. 1990. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev. 4:2202-2209. http://dx.doi.org/10.1101/gad.4.12a.2202.
-
(1990)
Genes Dev.
, vol.4
, pp. 2202-2209
-
-
Straus, D.1
Walter, W.2
Gross, C.A.3
-
19
-
-
0026696625
-
Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32
-
Gamer J, Bujard H, Bukau B. 1992. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833-842. http://dx.doi.org/10.1016/0092-8674(92)90294-M.
-
(1992)
Cell
, vol.69
, pp. 833-842
-
-
Gamer, J.1
Bujard, H.2
Bukau, B.3
-
20
-
-
0026600222
-
The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor
-
Liberek K, Galitski TP, Zylicz M, Georgopoulos C. 1992. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor. Proc. Natl. Acad. Sci. U. S. A. 89:3516-3520. http://dx.doi.org/10.1073/pnas.89.8.3516.
-
(1992)
Proc. Natl. Acad. Sci. U. S. A.
, vol.89
, pp. 3516-3520
-
-
Liberek, K.1
Galitski, T.P.2
Zylicz, M.3
Georgopoulos, C.4
-
21
-
-
0027504094
-
Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins
-
Liberek K, Georgopoulos C. 1993. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Proc. Natl. Acad. Sci. U. S. A. 90:11019-11023. http://dx.doi.org/10.1073/pnas.90.23.11019.
-
(1993)
Proc. Natl. Acad. Sci. U. S. A.
, vol.90
, pp. 11019-11023
-
-
Liberek, K.1
Georgopoulos, C.2
-
22
-
-
0029052538
-
The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the σ32 heat shock transcriptional regulator
-
Liberek K, Wall D, Georgopoulos C. 1995. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the σ32 heat shock transcriptional regulator. Proc. Natl. Acad. Sci. U. S. A. 92:6224-6228. http://dx.doi.org/10.1073/pnas.92.14.6224.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, pp. 6224-6228
-
-
Liberek, K.1
Wall, D.2
Georgopoulos, C.3
-
23
-
-
0030044799
-
A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32
-
Gamer J, Multhaup G, Tomoyasu T, Mccarty JS, Rüdiger S, Schönfeld H-J, Schirra C, Bujard H, Bukau B. 1996. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO. J. 15:607-617.
-
(1996)
EMBO. J.
, vol.15
, pp. 607-617
-
-
Gamer, J.1
Multhaup, G.2
Tomoyasu, T.3
Mccarty, J.S.4
Rüdiger, S.5
Schönfeld, H.-J.6
Schirra, C.7
Bujard, H.8
Bukau, B.9
-
24
-
-
0037160010
-
Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA
-
Kim S-Y, Sharma S, Hoskins JR, Wickner S. 2002. Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA. J. Biol. Chem. 277:44778-44783. http://dx.doi.org/10.1074/jbc.M206176200.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44778-44783
-
-
Kim, S.-Y.1
Sharma, S.2
Hoskins, J.R.3
Wickner, S.4
-
25
-
-
55249108963
-
Molecular basis for regulation of the heat shock transcription factor σ32 by the DnaK and DnaJ chaperones
-
Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B. 2008. Molecular basis for regulation of the heat shock transcription factor σ32 by the DnaK and DnaJ chaperones. Mol. Cell 32:347-358. http://dx.doi.org/10.1016/j.molcel.2008.09.016.
-
(2008)
Mol. Cell
, vol.32
, pp. 347-358
-
-
Rodriguez, F.1
Arsène-Ploetze, F.2
Rist, W.3
Rüdiger, S.4
Schneider-Mergener, J.5
Mayer, M.P.6
Bukau, B.7
-
26
-
-
7744233862
-
Conserved region 2.1 of Escherichia coli heat shock transcription factor σ32 is required for modulating both metabolic stability and transcriptional activity
-
Horikoshi M, Yura T, Tsuchimoto S, Fukumori Y, Kanemori M. 2004. Conserved region 2.1 of Escherichia coli heat shock transcription factor σ32 is required for modulating both metabolic stability and transcriptional activity. J. Bacteriol. 186:7474-7480. http://dx.doi.org/10.1128/JB.186.22.7474-7480.2004.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 7474-7480
-
-
Horikoshi, M.1
Yura, T.2
Tsuchimoto, S.3
Fukumori, Y.4
Kanemori, M.5
-
27
-
-
0024051671
-
Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress
-
Kusukawa N, Yura T. 1988. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev. 2:874-882. http://dx.doi.org/10.1101/gad.2.7.874.
-
(1988)
Genes Dev.
, vol.2
, pp. 874-882
-
-
Kusukawa, N.1
Yura, T.2
-
28
-
-
0026795216
-
Mini-F plasmid mutants able to replicate in Escherichia coli deficient in the DnaJ heat shock protein
-
Ishiai M, Wada C, Kawasaki Y, Yura T. 1992. Mini-F plasmid mutants able to replicate in Escherichia coli deficient in the DnaJ heat shock protein. J. Bacteriol. 174:5597-5603.
-
(1992)
J. Bacteriol.
, vol.174
, pp. 5597-5603
-
-
Ishiai, M.1
Wada, C.2
Kawasaki, Y.3
Yura, T.4
-
29
-
-
0028173076
-
A distinct segment of the σ32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli
-
Nagai H, Yuzawa H, Kanemori M, Yura T. 1994. A distinct segment of the σ32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 91:10280-10284. http://dx.doi.org/10.1073/pnas.91.22.10280.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 10280-10284
-
-
Nagai, H.1
Yuzawa, H.2
Kanemori, M.3
Yura, T.4
-
30
-
-
0021253583
-
Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli
-
Tobe T, Ito K, Yura T. 1984. Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli. Mol. Gen. Genet. 195:10-16. http://dx.doi.org/10.1007/BF00332716.
-
(1984)
Mol. Gen. Genet.
, vol.195
, pp. 10-16
-
-
Tobe, T.1
Ito, K.2
Yura, T.3
-
31
-
-
33744953241
-
The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle
-
Cajo GC, Horne BE, Kelley WL, Schwager F, Georgopoulos C, Genevaux P. 2006. The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle. J. Biol. Chem. 281:12436-12444. http://dx.doi.org/10.1074/jbc.M511192200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 12436-12444
-
-
Cajo, G.C.1
Horne, B.E.2
Kelley, W.L.3
Schwager, F.4
Georgopoulos, C.5
Genevaux, P.6
-
32
-
-
0003903343
-
-
2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
-
Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
-
(1989)
Molecular cloning: a laboratory manual
-
-
Sambrook, J.1
Fritsch, E.F.2
Maniatis, T.3
-
33
-
-
0034662681
-
Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis
-
Sawano A, Miyawaki A. 2000. Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. 28:e78. http://dx.doi.org/10.1093/nar/28.16.e78.
-
(2000)
Nucleic Acids Res.
, vol.28
-
-
Sawano, A.1
Miyawaki, A.2
-
34
-
-
0023123175
-
Escherichia coli dnaK null mutants are inviable at high temperature
-
Paek K-H, Walker GC. 1987. Escherichia coli dnaK null mutants are inviable at high temperature. J. Bacteriol. 169:283-290.
-
(1987)
J. Bacteriol.
, vol.169
, pp. 283-290
-
-
Paek, K.-H.1
Walker, G.C.2
-
35
-
-
0024672180
-
Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism
-
Bukau B, Walker GC. 1989. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171:2337-2346.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 2337-2346
-
-
Bukau, B.1
Walker, G.C.2
-
36
-
-
0028930540
-
The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone
-
Wall D, Zylicz M, Georgopoulos C. 1995. The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J. Biol. Chem. 270:2139-2144. http://dx.doi.org/10.1074/jbc.270.5.2139.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 2139-2144
-
-
Wall, D.1
Zylicz, M.2
Georgopoulos, C.3
-
37
-
-
84870916379
-
An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones
-
Zhuravleva A, Clerico EM, Gierasch M. 2012. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151:1296-1307. http://dx.doi.org/10.1016/j.cell.2012.11.002.
-
(2012)
Cell
, vol.151
, pp. 1296-1307
-
-
Zhuravleva, A.1
Clerico, E.M.2
Gierasch, M.3
-
38
-
-
84871689599
-
Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones
-
Kityk R, Kopp J, Sinning I, Mayer MP. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48: 863-874. http://dx.doi.org/10.1016/j.molcel.2012.09.023.
-
(2012)
Mol. Cell
, vol.48
, pp. 863-874
-
-
Kityk, R.1
Kopp, J.2
Sinning, I.3
Mayer, M.P.4
-
39
-
-
0028268243
-
Kinetics of molecular chaperone action
-
Schmid D, Baici A, Gehring H, Christen P. 1994. Kinetics of molecular chaperone action. Science 263:971-973. http://dx.doi.org/10.1126/science.8310296.
-
(1994)
Science
, vol.263
, pp. 971-973
-
-
Schmid, D.1
Baici, A.2
Gehring, H.3
Christen, P.4
-
40
-
-
84872577837
-
The cotranslational function of ribosomeassociated Hsp70 in eukaryotic protein homeostasis
-
Willmund F, del Alamo M, Pechmann S, Chen T, Albanèse V, Dammer EB, Peng J, Frydman J. 2013. The cotranslational function of ribosomeassociated Hsp70 in eukaryotic protein homeostasis. Cell 152:196-209. http://dx.doi.org/10.1016/j.cell.2012.12.001.
-
(2013)
Cell
, vol.152
, pp. 196-209
-
-
Willmund, F.1
del Alamo, M.2
Pechmann, S.3
Chen, T.4
Albanèse, V.5
Dammer, E.B.6
Peng, J.7
Frydman, J.8
|