메뉴 건너뛰기




Volumn 196, Issue 9, 2014, Pages 1694-1703

DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; BACTERIAL PROTEIN; HEAT SHOCK PROTEIN 70; MUTANT PROTEIN; PROTEIN DNAJ; PROTEIN DNAK; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR DELTA 32; UNCLASSIFIED DRUG;

EID: 84897518742     PISSN: 00219193     EISSN: 10985530     Source Type: Journal    
DOI: 10.1128/JB.01197-13     Document Type: Article
Times cited : (13)

References (40)
  • 1
    • 17044387386 scopus 로고    scopus 로고
    • Hsp70 chaperones. Cellular functions and molecular mechanism
    • Mayer MP, Bukau B. 2005. Hsp70 chaperones. Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62:670-684. http://dx.doi.org/10.1007/s00018-004-4464-6.
    • (2005) Cell. Mol. Life Sci. , vol.62 , pp. 670-684
    • Mayer, M.P.1    Bukau, B.2
  • 2
    • 35748962910 scopus 로고    scopus 로고
    • The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions
    • Genevaux P, Georgopoulos C, Kelley WL. 2007. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66:840-857. http://dx.doi.org/10.1111/j.1365-2958.2007.05961.x.
    • (2007) Mol. Microbiol. , vol.66 , pp. 840-857
    • Genevaux, P.1    Georgopoulos, C.2    Kelley, W.L.3
  • 3
    • 77954947810 scopus 로고    scopus 로고
    • The HSP70 chaperone machinery: J proteins as drivers of functional specificity
    • Kampinga HH, Craig EA. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11: 579-592. http://dx.doi.org/10.1038/nrm2941.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 579-592
    • Kampinga, H.H.1    Craig, E.A.2
  • 4
    • 79960652801 scopus 로고    scopus 로고
    • Molecular chaperones in protein folding and proteostasis
    • Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324-332. http://dx.doi.org/10.1038/nature10317.
    • (2011) Nature , vol.475 , pp. 324-332
    • Hartl, F.U.1    Bracher, A.2    Hayer-Hartl, M.3
  • 5
    • 0025730978 scopus 로고
    • Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK
    • Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M. 1991. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. U. S. A. 88:2874-2878. http://dx.doi.org/10.1073/pnas.88.7.2874.
    • (1991) Proc. Natl. Acad. Sci. U. S. A. , vol.88 , pp. 2874-2878
    • Liberek, K.1    Marszalek, J.2    Ang, D.3    Georgopoulos, C.4    Zylicz, M.5
  • 6
    • 0026596223 scopus 로고
    • Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding
    • Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683-689. http://dx.doi.org/10.1038/356683a0.
    • (1992) Nature , vol.356 , pp. 683-689
    • Langer, T.1    Lu, C.2    Echols, H.3    Flanagan, J.4    Hayer, M.K.5    Hartl, F.U.6
  • 7
    • 0028151509 scopus 로고
    • The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ and GrpE
    • Szabo A, Langer T, Schröder H, Flanagan J, Bukau B, Hartl FU. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ and GrpE. Proc. Natl. Acad. Sci. U. S. A. 91:10345-10349. http://dx.doi.org/10.1073/pnas.91.22.10345.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 10345-10349
    • Szabo, A.1    Langer, T.2    Schröder, H.3    Flanagan, J.4    Bukau, B.5    Hartl, F.U.6
  • 8
    • 84861745331 scopus 로고    scopus 로고
    • Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability. Implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function
    • Suzuki H, Ikeda A, Tsuchimoto S, Adachi K, Noguchi A, Fukumori Y, Kanemori M. 2012. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability. Implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function. J. Biol. Chem. 287:19275-19283. http://dx.doi.org/10.1074/jbc.M111.331470.
    • (2012) J. Biol. Chem. , vol.287 , pp. 19275-19283
    • Suzuki, H.1    Ikeda, A.2    Tsuchimoto, S.3    Adachi, K.4    Noguchi, A.5    Fukumori, Y.6    Kanemori, M.7
  • 9
    • 0023240043 scopus 로고
    • The heat shock response of E. coli is regulated by changes in the concentration of σ32
    • Straus DB, Walter WA, Gross CA. 1987. The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329:348-351. http://dx.doi.org/10.1038/329348a0.
    • (1987) Nature , vol.329 , pp. 348-351
    • Straus, D.B.1    Walter, W.A.2    Gross, C.A.3
  • 10
    • 0001897486 scopus 로고    scopus 로고
    • The heat shock response: regulation and function
    • Storz G, Hengge-Aronis R (ed). ASM Press, Washington, DC.
    • Yura T, Kanemori M, Morita MT. 2000. The heat shock response: regulation and function, p 3-18. In Storz G, Hengge-Aronis R (ed), Bacterial stress responses. ASM Press, Washington, DC.
    • (2000) Bacterial stress responses , pp. 3-18
    • Yura, T.1    Kanemori, M.2    Morita, M.T.3
  • 11
    • 51949087754 scopus 로고    scopus 로고
    • Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response
    • Guisbert E, Yura T, Rhodius VA, Gross CA. 2008. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol. Mol. Biol. Rev. 72:545-554. http://dx.doi.org/10.1128/MMBR.00007-08.
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 545-554
    • Guisbert, E.1    Yura, T.2    Rhodius, V.A.3    Gross, C.A.4
  • 12
    • 0344824655 scopus 로고    scopus 로고
    • Proteolysis in bacterial regulatory circuits
    • Gottesman S. 2003. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19:565-587. http://dx.doi.org/10.1146/annurev.cellbio.19.110701.153228.
    • (2003) Annu. Rev. Cell Dev. Biol. , vol.19 , pp. 565-587
    • Gottesman, S.1
  • 13
    • 0028985616 scopus 로고
    • Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB
    • Herman C, Thévenet D, D'Ari R, Bouloc P. 1995. Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. U. S. A. 92:3516-3520. http://dx.doi.org/10.1073/pnas.92.8.3516.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 3516-3520
    • Herman, C.1    Thévenet, D.2    D'Ari, R.3    Bouloc, P.4
  • 15
    • 0030613795 scopus 로고    scopus 로고
    • Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of σ32 and abnormal proteins in Escherichia coli
    • Kanemori M, Nishihara K, Yanagi H, Yura T. 1997. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of σ32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179: 7219-7225.
    • (1997) J. Bacteriol. , vol.179 , pp. 7219-7225
    • Kanemori, M.1    Nishihara, K.2    Yanagi, H.3    Yura, T.4
  • 16
    • 0033618309 scopus 로고    scopus 로고
    • Marked instability of the σ32 heat shock transcription factor at high temperature. Implications for heat shock regulation
    • Kanemori M, Yanagi H, Yura T. 1999. Marked instability of the σ32 heat shock transcription factor at high temperature. Implications for heat shock regulation. J. Biol. Chem. 274:22002-22007.
    • (1999) J. Biol. Chem. , vol.274 , pp. 22002-22007
    • Kanemori, M.1    Yanagi, H.2    Yura, T.3
  • 17
    • 0024584414 scopus 로고
    • Modulation of stability of the Escherichia coli heat shock regulatory factor σ32
    • Tilly K, Spence J, Georgopoulos C. 1989. Modulation of stability of the Escherichia coli heat shock regulatory factor σ32. J. Bacteriol. 171:1585-1589.
    • (1989) J. Bacteriol. , vol.171 , pp. 1585-1589
    • Tilly, K.1    Spence, J.2    Georgopoulos, C.3
  • 18
    • 0025632973 scopus 로고
    • DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32
    • Straus D, Walter W, Gross CA. 1990. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev. 4:2202-2209. http://dx.doi.org/10.1101/gad.4.12a.2202.
    • (1990) Genes Dev. , vol.4 , pp. 2202-2209
    • Straus, D.1    Walter, W.2    Gross, C.A.3
  • 19
    • 0026696625 scopus 로고
    • Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32
    • Gamer J, Bujard H, Bukau B. 1992. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833-842. http://dx.doi.org/10.1016/0092-8674(92)90294-M.
    • (1992) Cell , vol.69 , pp. 833-842
    • Gamer, J.1    Bujard, H.2    Bukau, B.3
  • 20
    • 0026600222 scopus 로고
    • The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor
    • Liberek K, Galitski TP, Zylicz M, Georgopoulos C. 1992. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor. Proc. Natl. Acad. Sci. U. S. A. 89:3516-3520. http://dx.doi.org/10.1073/pnas.89.8.3516.
    • (1992) Proc. Natl. Acad. Sci. U. S. A. , vol.89 , pp. 3516-3520
    • Liberek, K.1    Galitski, T.P.2    Zylicz, M.3    Georgopoulos, C.4
  • 21
    • 0027504094 scopus 로고
    • Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins
    • Liberek K, Georgopoulos C. 1993. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Proc. Natl. Acad. Sci. U. S. A. 90:11019-11023. http://dx.doi.org/10.1073/pnas.90.23.11019.
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 11019-11023
    • Liberek, K.1    Georgopoulos, C.2
  • 22
    • 0029052538 scopus 로고
    • The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the σ32 heat shock transcriptional regulator
    • Liberek K, Wall D, Georgopoulos C. 1995. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the σ32 heat shock transcriptional regulator. Proc. Natl. Acad. Sci. U. S. A. 92:6224-6228. http://dx.doi.org/10.1073/pnas.92.14.6224.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 6224-6228
    • Liberek, K.1    Wall, D.2    Georgopoulos, C.3
  • 23
    • 0030044799 scopus 로고    scopus 로고
    • A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32
    • Gamer J, Multhaup G, Tomoyasu T, Mccarty JS, Rüdiger S, Schönfeld H-J, Schirra C, Bujard H, Bukau B. 1996. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO. J. 15:607-617.
    • (1996) EMBO. J. , vol.15 , pp. 607-617
    • Gamer, J.1    Multhaup, G.2    Tomoyasu, T.3    Mccarty, J.S.4    Rüdiger, S.5    Schönfeld, H.-J.6    Schirra, C.7    Bujard, H.8    Bukau, B.9
  • 24
    • 0037160010 scopus 로고    scopus 로고
    • Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA
    • Kim S-Y, Sharma S, Hoskins JR, Wickner S. 2002. Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA. J. Biol. Chem. 277:44778-44783. http://dx.doi.org/10.1074/jbc.M206176200.
    • (2002) J. Biol. Chem. , vol.277 , pp. 44778-44783
    • Kim, S.-Y.1    Sharma, S.2    Hoskins, J.R.3    Wickner, S.4
  • 25
    • 55249108963 scopus 로고    scopus 로고
    • Molecular basis for regulation of the heat shock transcription factor σ32 by the DnaK and DnaJ chaperones
    • Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B. 2008. Molecular basis for regulation of the heat shock transcription factor σ32 by the DnaK and DnaJ chaperones. Mol. Cell 32:347-358. http://dx.doi.org/10.1016/j.molcel.2008.09.016.
    • (2008) Mol. Cell , vol.32 , pp. 347-358
    • Rodriguez, F.1    Arsène-Ploetze, F.2    Rist, W.3    Rüdiger, S.4    Schneider-Mergener, J.5    Mayer, M.P.6    Bukau, B.7
  • 26
    • 7744233862 scopus 로고    scopus 로고
    • Conserved region 2.1 of Escherichia coli heat shock transcription factor σ32 is required for modulating both metabolic stability and transcriptional activity
    • Horikoshi M, Yura T, Tsuchimoto S, Fukumori Y, Kanemori M. 2004. Conserved region 2.1 of Escherichia coli heat shock transcription factor σ32 is required for modulating both metabolic stability and transcriptional activity. J. Bacteriol. 186:7474-7480. http://dx.doi.org/10.1128/JB.186.22.7474-7480.2004.
    • (2004) J. Bacteriol. , vol.186 , pp. 7474-7480
    • Horikoshi, M.1    Yura, T.2    Tsuchimoto, S.3    Fukumori, Y.4    Kanemori, M.5
  • 27
    • 0024051671 scopus 로고
    • Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress
    • Kusukawa N, Yura T. 1988. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev. 2:874-882. http://dx.doi.org/10.1101/gad.2.7.874.
    • (1988) Genes Dev. , vol.2 , pp. 874-882
    • Kusukawa, N.1    Yura, T.2
  • 28
    • 0026795216 scopus 로고
    • Mini-F plasmid mutants able to replicate in Escherichia coli deficient in the DnaJ heat shock protein
    • Ishiai M, Wada C, Kawasaki Y, Yura T. 1992. Mini-F plasmid mutants able to replicate in Escherichia coli deficient in the DnaJ heat shock protein. J. Bacteriol. 174:5597-5603.
    • (1992) J. Bacteriol. , vol.174 , pp. 5597-5603
    • Ishiai, M.1    Wada, C.2    Kawasaki, Y.3    Yura, T.4
  • 29
    • 0028173076 scopus 로고
    • A distinct segment of the σ32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli
    • Nagai H, Yuzawa H, Kanemori M, Yura T. 1994. A distinct segment of the σ32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 91:10280-10284. http://dx.doi.org/10.1073/pnas.91.22.10280.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 10280-10284
    • Nagai, H.1    Yuzawa, H.2    Kanemori, M.3    Yura, T.4
  • 30
    • 0021253583 scopus 로고
    • Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli
    • Tobe T, Ito K, Yura T. 1984. Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli. Mol. Gen. Genet. 195:10-16. http://dx.doi.org/10.1007/BF00332716.
    • (1984) Mol. Gen. Genet. , vol.195 , pp. 10-16
    • Tobe, T.1    Ito, K.2    Yura, T.3
  • 31
    • 33744953241 scopus 로고    scopus 로고
    • The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle
    • Cajo GC, Horne BE, Kelley WL, Schwager F, Georgopoulos C, Genevaux P. 2006. The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle. J. Biol. Chem. 281:12436-12444. http://dx.doi.org/10.1074/jbc.M511192200.
    • (2006) J. Biol. Chem. , vol.281 , pp. 12436-12444
    • Cajo, G.C.1    Horne, B.E.2    Kelley, W.L.3    Schwager, F.4    Georgopoulos, C.5    Genevaux, P.6
  • 33
    • 0034662681 scopus 로고    scopus 로고
    • Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis
    • Sawano A, Miyawaki A. 2000. Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. 28:e78. http://dx.doi.org/10.1093/nar/28.16.e78.
    • (2000) Nucleic Acids Res. , vol.28
    • Sawano, A.1    Miyawaki, A.2
  • 34
    • 0023123175 scopus 로고
    • Escherichia coli dnaK null mutants are inviable at high temperature
    • Paek K-H, Walker GC. 1987. Escherichia coli dnaK null mutants are inviable at high temperature. J. Bacteriol. 169:283-290.
    • (1987) J. Bacteriol. , vol.169 , pp. 283-290
    • Paek, K.-H.1    Walker, G.C.2
  • 35
    • 0024672180 scopus 로고
    • Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism
    • Bukau B, Walker GC. 1989. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171:2337-2346.
    • (1989) J. Bacteriol. , vol.171 , pp. 2337-2346
    • Bukau, B.1    Walker, G.C.2
  • 36
    • 0028930540 scopus 로고
    • The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone
    • Wall D, Zylicz M, Georgopoulos C. 1995. The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J. Biol. Chem. 270:2139-2144. http://dx.doi.org/10.1074/jbc.270.5.2139.
    • (1995) J. Biol. Chem. , vol.270 , pp. 2139-2144
    • Wall, D.1    Zylicz, M.2    Georgopoulos, C.3
  • 37
    • 84870916379 scopus 로고    scopus 로고
    • An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones
    • Zhuravleva A, Clerico EM, Gierasch M. 2012. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151:1296-1307. http://dx.doi.org/10.1016/j.cell.2012.11.002.
    • (2012) Cell , vol.151 , pp. 1296-1307
    • Zhuravleva, A.1    Clerico, E.M.2    Gierasch, M.3
  • 38
    • 84871689599 scopus 로고    scopus 로고
    • Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones
    • Kityk R, Kopp J, Sinning I, Mayer MP. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48: 863-874. http://dx.doi.org/10.1016/j.molcel.2012.09.023.
    • (2012) Mol. Cell , vol.48 , pp. 863-874
    • Kityk, R.1    Kopp, J.2    Sinning, I.3    Mayer, M.P.4
  • 39
    • 0028268243 scopus 로고
    • Kinetics of molecular chaperone action
    • Schmid D, Baici A, Gehring H, Christen P. 1994. Kinetics of molecular chaperone action. Science 263:971-973. http://dx.doi.org/10.1126/science.8310296.
    • (1994) Science , vol.263 , pp. 971-973
    • Schmid, D.1    Baici, A.2    Gehring, H.3    Christen, P.4
  • 40
    • 84872577837 scopus 로고    scopus 로고
    • The cotranslational function of ribosomeassociated Hsp70 in eukaryotic protein homeostasis
    • Willmund F, del Alamo M, Pechmann S, Chen T, Albanèse V, Dammer EB, Peng J, Frydman J. 2013. The cotranslational function of ribosomeassociated Hsp70 in eukaryotic protein homeostasis. Cell 152:196-209. http://dx.doi.org/10.1016/j.cell.2012.12.001.
    • (2013) Cell , vol.152 , pp. 196-209
    • Willmund, F.1    del Alamo, M.2    Pechmann, S.3    Chen, T.4    Albanèse, V.5    Dammer, E.B.6    Peng, J.7    Frydman, J.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.