메뉴 건너뛰기




Volumn , Issue PART 2, 2013, Pages 948-956

Distributed training of large-scale logistic models

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS;

EID: 84897475251     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (20)
  • 1
    • 33749242628 scopus 로고    scopus 로고
    • Dynamic topic models
    • ACM
    • Blei, D.M. and Lafferty, J.D. Dynamic topic models. In ICML, pp. 113-120. ACM, 2006.
    • (2006) ICML , pp. 113-120
    • Blei, D.M.1    Lafferty, J.D.2
  • 3
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Bottou, L. Large-scale machine learning with stochastic gradient descent. In Compstat, 2010.
    • (2010) Compstat
    • Bottou, L.1
  • 6
  • 8
    • 84946263679 scopus 로고
    • Robust regression using iteratively reweighted least-squares
    • Holland, P.W. and Welsch, R.E. Robust regression using iteratively reweighted least-squares. CSTM, 1977.
    • (1977) CSTM
    • Holland, P.W.1    Welsch, R.E.2
  • 9
    • 41549094533 scopus 로고    scopus 로고
    • Tractable approximate robust geometric programming
    • DOI 10.1007/s11081-007-9025-z
    • Hsiung, K.L., Kim, S.J., and Boyd, S. Tractable approximate robust geometric programming. Optimization and Engineering, 9(2):95-118, 2008. (Pubitemid 351460135)
    • (2008) Optimization and Engineering , vol.9 , Issue.2 , pp. 95-118
    • Hsiung, K.-L.1    Kim, S.-J.2    Boyd, S.3
  • 12
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu, D.C. and Nocedal, J. On the limited memory bfgs method for large scale optimization. Mathematical programming, 45(1):503-528, 1989. (Pubitemid 20660315)
    • (1989) Mathematical Programming, Series B , vol.45 , Issue.3 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 13
    • 80053441013 scopus 로고    scopus 로고
    • Piecewise bounds for estimating bernoulli-logistic latent gaussian models
    • Marlin, B., Khan, M.E., and Murphy, K. Piecewise bounds for estimating bernoulli-logistic latent gaussian models. In ICML, 2011.
    • (2011) ICML
    • Marlin, B.1    Khan, M.E.2    Murphy, K.3
  • 15
    • 39149097400 scopus 로고
    • Customer satisfaction, customer retention, and market share
    • Rust, R.T. and Zahorik, A.J. Customer satisfaction, customer retention, and market share. Journal of retailing, 69(2):193-215, 1993.
    • (1993) Journal of Retailing , vol.69 , Issue.2 , pp. 193-215
    • Rust, R.T.1    Zahorik, A.J.2
  • 17
    • 85043116988 scopus 로고    scopus 로고
    • Shallow parsing with conditional random fields
    • Association for Computational Linguistics
    • Sha, F. and Pereira, F. Shallow parsing with conditional random fields. In NAACL, pp. 134-141. Association for Computational Linguistics, 2003.
    • (2003) NAACL , pp. 134-141
    • Sha, F.1    Pereira, F.2
  • 19
    • 80052660676 scopus 로고    scopus 로고
    • Dual coordinate descent methods for logistic regression and maximum entropy models
    • Yu, H.F., Huang, F.L., and Lin, C.J. Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning, 85(1):41-75, 2011.
    • (2011) Machine Learning , vol.85 , Issue.1 , pp. 41-75
    • Yu, H.F.1    Huang, F.L.2    Lin, C.J.3
  • 20
    • 33749243068 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • ACM
    • Zhang, T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML, pp. 116. ACM, 2004.
    • (2004) ICML , pp. 116
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.