-
1
-
-
84897111438
-
-
Machine Learning, Special Issue on ML for Science and Society
-
Antonie, L., Inwood, K., Lizotte, D., & Ross, J. A. (2013). Tracking people over time in 19th century Canada. Machine Learning, Special Issue on ML for Science and Society.
-
(2013)
Tracking People over Time in 19th Century Canada
-
-
Antonie, L.1
Inwood, K.2
Lizotte, D.3
Ross, J.A.4
-
2
-
-
0007160051
-
Applying classification algorithms in practice
-
10.1023/A:1018557312521
-
Brodley, C., & Smyth, P. (1997). Applying classification algorithms in practice. Statistics and Computing, 7, 45-56.
-
(1997)
Statistics and Computing
, vol.7
, pp. 45-56
-
-
Brodley, C.1
Smyth, P.2
-
3
-
-
36849001339
-
On-board analysis of uncalibrated data for a spacecraft at Mars
-
Castano, R., Wagstaff, K. L., Chien, S., Stough, T. M., & Tang, B. (2007). On-board analysis of uncalibrated data for a spacecraft at Mars. In Proceedings of the thirteenth international conference on knowledge discovery and data mining (pp. 922-930).
-
(2007)
Proceedings of the Thirteenth International Conference on Knowledge Discovery and Data Mining
, pp. 922-930
-
-
Castano, R.1
Wagstaff, K.L.2
Chien, S.3
Stough, T.M.4
Tang, B.5
-
4
-
-
0004042547
-
-
Tech. rep., SPSS
-
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. Tech. rep., SPSS.
-
(2000)
CRISP-DM 1.0: Step-by-step Data Mining Guide
-
-
Chapman, P.1
Clinton, J.2
Kerber, R.3
Khabaza, T.4
Reinartz, T.5
Shearer, C.6
Wirth, R.7
-
5
-
-
0041833610
-
Partial AUC estimation and regression
-
10.1111/1541-0420.00071 1210.62152 2004266
-
Dodd, L. E., & Pepe, M. S. (2003). Partial AUC estimation and regression. Biometrics, 59(3), 614-623.
-
(2003)
Biometrics
, vol.59
, Issue.3
, pp. 614-623
-
-
Dodd, L.E.1
Pepe, M.S.2
-
6
-
-
0002283033
-
From data mining to knowledge discovery in databases
-
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17, 37-54.
-
(1996)
AI Magazine
, vol.17
, pp. 37-54
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
7
-
-
0002169158
-
Knowledge discovery in databases: An overview
-
Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: an overview. AI Magazine, 13(3), 57-70.
-
(1992)
AI Magazine
, vol.13
, Issue.3
, pp. 57-70
-
-
Frawley, W.J.1
Piatetsky-Shapiro, G.2
Matheus, C.J.3
-
11
-
-
84881234201
-
Growing a list
-
10.1007/s10618-013-0329-7 1281.68186 3085964
-
Letham, B., Rudin, C., & Heller, K. A. (2013a). Growing a list. Data Mining and Knowledge Discovery, 27(3), 372-395.
-
(2013)
Data Mining and Knowledge Discovery
, vol.27
, Issue.3
, pp. 372-395
-
-
Letham, B.1
Rudin, C.2
Heller, K.A.3
-
12
-
-
84898922611
-
An interpretable stroke prediction model using rules and Bayesian analysis
-
Letham, B., Rudin, C., McCormick, T. H., & Madigan, D. (2013b). An interpretable stroke prediction model using rules and Bayesian analysis. In Proceedings of AAAI late breaking track.
-
(2013)
Proceedings of AAAI Late Breaking Track
-
-
Letham, B.1
Rudin, C.2
McCormick, T.H.3
Madigan, D.4
-
13
-
-
84897116685
-
Water pipe condition assessment: A hierarchical beta process approach for sparse incident data
-
Li, Z., Zhang, M. B., Chen F, W. Y., Whiffin, V., Taib R, Vicky W, & Wang, Y. (2013). Water pipe condition assessment: a hierarchical beta process approach for sparse incident data. Machine Learning, Special Issue on ML for Science and Society.
-
(2013)
Machine Learning, Special Issue on ML for Science and Society
-
-
Li, Z.1
Zhang, B.M.2
Chen, F.3
Whiffin, V.4
Taib, R.5
Vicky, W.6
Wang, Y.7
-
14
-
-
84866243029
-
Bayesian hierarchical modeling for predicting medical conditions
-
10.1214/11-AOAS522 1243.62036 2976486
-
McCormick, T. H., Rudin, C., & Madigan, D. (2012). Bayesian hierarchical modeling for predicting medical conditions. The Annals of Applied Statistics, 6(2), 652-668.
-
(2012)
The Annals of Applied Statistics
, vol.6
, Issue.2
, pp. 652-668
-
-
McCormick, T.H.1
Rudin, C.2
Madigan, D.3
-
15
-
-
84897111466
-
Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning
-
McGovern, A., DavidJ Williams J, G. I., Brown, R., & Basara, J. (2013). Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning. Machine Learning, Special Issue on ML for Science and Society.
-
(2013)
Machine Learning, Special Issue on ML for Science and Society
-
-
McGovern, A.1
David, J.2
Williams, J.G.I.3
Brown, R.4
Basara, J.5
-
16
-
-
84897115026
-
-
Machine Learning, Special Issue on ML for Science and Society
-
Menon, A. K., Jiang, X., Kim, J., Vaidya, J., & Ohno-Machado, L. (2013). Detecting inappropriate access to electronic health records using collaborative filtering. Machine Learning, Special Issue on ML for Science and Society.
-
(2013)
Detecting Inappropriate Access to Electronic Health Records Using Collaborative Filtering
-
-
Menon, A.K.1
Jiang, X.2
Kim, J.3
Vaidya, J.4
Ohno-Machado, L.5
-
18
-
-
84907032241
-
-
Machine Learning, Special Issue on ML for Science and Society
-
Perlich, C., Dalessandro, B., Raeder, T., Stitelman, O., & Provost, F. (2013). Machine learning for targeted display advertising: transfer learning in action. Machine Learning, Special Issue on ML for Science and Society.
-
(2013)
Machine Learning for Targeted Display Advertising: Transfer Learning in Action
-
-
Perlich, C.1
Dalessandro, B.2
Raeder, T.3
Stitelman, O.4
Provost, F.5
-
19
-
-
0000202718
-
Guest editor's introduction: On applied research in machine learning
-
10.1023/A:1007442505281
-
Provost, F., & Kohavi, R. (1998). Guest editor's introduction: on applied research in machine learning. Machine Learning, 30, 127-132.
-
(1998)
Machine Learning
, vol.30
, pp. 127-132
-
-
Provost, F.1
Kohavi, R.2
-
20
-
-
84897111338
-
-
Provost, F., Fawcett, T., Danyluk, A., & Riddle, P. (1996). On the value of applied research in machine learning. http://home.comcast.net/~tom. fawcett/public-html/papers/essay.html.
-
(1996)
On the Value of Applied Research in Machine Learning
-
-
Provost, F.1
Fawcett, T.2
Danyluk, A.3
Riddle, P.4
-
21
-
-
84890597218
-
The pitfalls of prediction
-
Ridgeway, G. (2013). The pitfalls of prediction. NIJ Journal, 271, 34-40.
-
(2013)
NIJ Journal
, vol.271
, pp. 34-40
-
-
Ridgeway, G.1
-
22
-
-
74849137153
-
A process for predicting manhole events in Manhattan
-
10.1007/s10994-009-5166-y 3108158
-
Rudin, C., Passonneau, R., Radeva, A., Dutta, H., Ierome, S., & Isaac, D. (2010). A process for predicting manhole events in Manhattan. Machine Learning, 80, 1-31.
-
(2010)
Machine Learning
, vol.80
, pp. 1-31
-
-
Rudin, C.1
Passonneau, R.2
Radeva, A.3
Dutta, H.4
Ierome, S.5
Isaac, D.6
-
23
-
-
84055217877
-
Machine learning for the New York City power grid
-
10.1109/TPAMI.2011.108
-
Rudin, C., Waltz, D., Anderson, R. N., Boulanger, A., Salleb-Aouissi, A., Chow, M., Dutta, H., Gross, P., Huang, B., Ierome, S., Isaac, D., Kressner, A., Passonneau, R. J., Radeva, A., & Wu, L. (2012). Machine learning for the New York City power grid. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(2), 328-345.
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.2
, pp. 328-345
-
-
Rudin, C.1
Waltz, D.2
Anderson, R.N.3
Boulanger, A.4
Salleb-Aouissi, A.5
Chow, M.6
Dutta, H.7
Gross, P.8
Huang, B.9
Ierome, S.10
Isaac, D.11
Kressner, A.12
Passonneau, R.J.13
Radeva, A.14
Wu, L.15
-
24
-
-
0032001170
-
Learning in the "real world"
-
10.1023/A:1007448122119
-
Saitta, L., & Neri, F. (1998). Learning in the "real world". Machine Learning, 30, 133-163.
-
(1998)
Machine Learning
, vol.30
, pp. 133-163
-
-
Saitta, L.1
Neri, F.2
-
29
-
-
84893349437
-
Guiding scientific discovery with explanations using DEMUD
-
Wagstaff, K. L., Lanza, N. L., Thompson, D. R., Dietterich, T. G., & Gilmore, M. S. (2013a). Guiding scientific discovery with explanations using DEMUD. In Proceedings of the twenty-seventh conference on artificial intelligence.
-
(2013)
Proceedings of the Twenty-seventh Conference on Artificial Intelligence
-
-
Wagstaff, K.L.1
Lanza, N.L.2
Thompson, D.R.3
Dietterich, T.G.4
Gilmore, M.S.5
-
30
-
-
84882737914
-
Smart, texture-sensitive instrument classification for in situ rock and layer analysis
-
Wagstaff, K. L., Thompson, D. R., Abbey, W., Allwood, A., Bekker, D. L., Cabrol, N. A., Fuchs, T., & Ortega, K. (2013b). Smart, texture-sensitive instrument classification for in situ rock and layer analysis. Geophysical Research Letters, 40.
-
(2013)
Geophysical Research Letters
, vol.40
-
-
Wagstaff, K.L.1
Thompson, D.R.2
Abbey, W.3
Allwood, A.4
Bekker, D.L.5
Cabrol, N.A.6
Fuchs, T.7
Ortega, K.8
-
31
-
-
84897108776
-
Detecting patterns of crime with Series finder
-
Wang, T., Rudin, C., Wagner, D., & Sevieri, R. (2013). Detecting patterns of crime with Series finder. In Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML-PKDD 2013).
-
(2013)
Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2013)
-
-
Wang, T.1
Rudin, C.2
Wagner, D.3
Sevieri, R.4
-
32
-
-
84897108940
-
Using random forests to diagnose aviation turbulence
-
Special Issue on ML for Science and Society
-
Williams, J. K. (2013). Using random forests to diagnose aviation turbulence. Machine Learning, Special Issue on ML for Science and Society.
-
(2013)
Machine Learning
-
-
Williams, J.K.1
|