메뉴 건너뛰기




Volumn 32, Issue 30, 2013, Pages 5260-5277

Estimation of the effect of interventions that modify the received treatment

Author keywords

Causal inference; Double robustness; Marginal structural mean model; Observational study

Indexed keywords

ARTICLE; DATA ANALYSIS; HEALTH CARE POLICY; INTERVENTION STUDY; LIMIT OF QUANTITATION; LUNG CANCER; MAGNITUDE ESTIMATION METHOD; MODIFIED TREATMENT POLICY; OBSERVATIONAL STUDY; POSTOPERATIVE PERIOD; PROBABILITY;

EID: 84897077322     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.5907     Document Type: Article
Times cited : (96)

References (27)
  • 1
    • 58149417330 scopus 로고
    • Estimating causal effects of treatment in randomized and nonrandomized studies
    • Rubin D. Estimating causal effects of treatment in randomized and nonrandomized studies. Journal of Educational Psychology 1974; 66:688-701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.1
  • 2
    • 0035528171 scopus 로고    scopus 로고
    • Causal inference for complex longitudinal data: the continuous case
    • Gill R, Robins J. Causal inference for complex longitudinal data: the continuous case. Annals of Statistics 2001; 29:1785-1811.
    • (2001) Annals of Statistics , vol.29 , pp. 1785-1811
    • Gill, R.1    Robins, J.2
  • 4
    • 84862895832 scopus 로고    scopus 로고
    • Population intervention causal effects based on stochastic interventions
    • DiazMunoz I, vander Laan M. Population intervention causal effects based on stochastic interventions. Biometrics 2012; 68:541-549.
    • (2012) Biometrics , vol.68 , pp. 541-549
    • DiazMunoz, I.1    Vander Laan, M.2
  • 5
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with sustained exposure periods: applications to control of the healthy worker survivor effect
    • Robins J. A new approach to causal inference in mortality studies with sustained exposure periods: applications to control of the healthy worker survivor effect. Mathematical Modeling 1986; 7:1393-1512.
    • (1986) Mathematical Modeling , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 6
    • 33845913126 scopus 로고    scopus 로고
    • Optimal structured nested models for optimal sequential decisions
    • Lin DY, Heagerty P (eds). Springer: New York
    • Robins J. Optimal structured nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics, Lin DY, Heagerty P (eds). Springer: New York, 2004; 189-326.
    • (2004) Proceedings of the Second Seattle Symposium on Biostatistics , pp. 189-326
    • Robins, J.1
  • 8
    • 33947624563 scopus 로고    scopus 로고
    • Demystifying optimal dynamic treatment regimes
    • Moodie E, Richardson T, Stephens D. Demystifying optimal dynamic treatment regimes. Biometrics 2007; 63:447-455.
    • (2007) Biometrics , vol.63 , pp. 447-455
    • Moodie, E.1    Richardson, T.2    Stephens, D.3
  • 10
    • 75349099611 scopus 로고    scopus 로고
    • Intervening on risk factors for coronary heart disease: an application of the parametric g-formula
    • Taubman S, Robins J, Mittleman M, Hernan M. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. International Journal of Epidemiology 2009; 38:1599-1611.
    • (2009) International Journal of Epidemiology , vol.38 , pp. 1599-1611
    • Taubman, S.1    Robins, J.2    Mittleman, M.3    Hernan, M.4
  • 11
    • 80053137537 scopus 로고    scopus 로고
    • Effects of treatment on the treated: identification and generalization. Uncertainty in Artificial Intelligence, Montreal, QC, Canada
    • Shpitser I, Pearl J. Effects of treatment on the treated: identification and generalization. Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 2009; 514-521.
    • (2009) , pp. 514-521
    • Shpitser, I.1    Pearl, J.2
  • 13
    • 0004239474 scopus 로고
    • John Wiley & Sons: New York, New York
    • Cox D. Planning of Experiments. John Wiley & Sons: New York, New York, 1958.
    • (1958) Planning of Experiments
    • Cox, D.1
  • 14
    • 74549138178 scopus 로고    scopus 로고
    • Concerning the consistency assumption in causal inference
    • VanderWeele T. Concerning the consistency assumption in causal inference. Epidemiology 2009; 20:880-833.
    • (2009) Epidemiology , vol.20 , pp. 880-833
    • VanderWeele, T.1
  • 15
    • 84861641356 scopus 로고    scopus 로고
    • Improved double-robust estimation in missing data and causal inference models
    • Rotnitzky A, Lei Q, Sued M, Robins JM. Improved double-robust estimation in missing data and causal inference models. Biometrika 2012; 99:439-456.
    • (2012) Biometrika , vol.99 , pp. 439-456
    • Rotnitzky, A.1    Lei, Q.2    Sued, M.3    Robins, J.M.4
  • 16
    • 0005976738 scopus 로고    scopus 로고
    • Comment on the article 'Inference for semiparametric models: Some questions and an answer'
    • Robins J, Rotnitzky A. Comment on the article 'Inference for semiparametric models: Some questions and an answer'. Statistica Sinica 2001; 11:920-936.
    • (2001) Statistica Sinica , vol.11 , pp. 920-936
    • Robins, J.1    Rotnitzky, A.2
  • 17
    • 0000858149 scopus 로고    scopus 로고
    • On the role of the propensity score in efficient semi parametric estimation of average treatment effects
    • Hahn J. On the role of the propensity score in efficient semi parametric estimation of average treatment effects. Econometrica 1998; 66:315-331.
    • (1998) Econometrica , vol.66 , pp. 315-331
    • Hahn, J.1
  • 18
    • 0141495120 scopus 로고    scopus 로고
    • Efficient estimation of average treatment effects using the estimated propensity score
    • Hirano K, Imbens G, Ridder G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 2003; 71:1161-1189.
    • (2003) Econometrica , vol.71 , pp. 1161-1189
    • Hirano, K.1    Imbens, G.2    Ridder, G.3
  • 19
    • 84897076560 scopus 로고    scopus 로고
    • Improved double-robust estimation of missing data and causal inference models and efficient estimation of the average treatment effect on the treated. Ph.D. Thesis, Department of Biostatistics, Harvard School of Public Health
    • Lei Q. Improved double-robust estimation of missing data and causal inference models and efficient estimation of the average treatment effect on the treated. Ph.D. Thesis, Department of Biostatistics, Harvard School of Public Health, 2011.
    • (2011)
    • Lei, Q.1
  • 22
    • 0001409980 scopus 로고
    • The asymptotic effect of substituting estimators for parameters in certain type of statistics
    • Pierce D. The asymptotic effect of substituting estimators for parameters in certain type of statistics. Annals of Statistics 1982; 10:475-478.
    • (1982) Annals of Statistics , vol.10 , pp. 475-478
    • Pierce, D.1
  • 23
    • 25844518492 scopus 로고    scopus 로고
    • A paradox concerning nuisance parameters and projected estimating functions
    • Henmi M, Eguchi S. A paradox concerning nuisance parameters and projected estimating functions. Biometrika 2004; 91:929-941.
    • (2004) Biometrika , vol.91 , pp. 929-941
    • Henmi, M.1    Eguchi, S.2
  • 24
    • 33847633000 scopus 로고    scopus 로고
    • Causal effect models for realistic individualized treatment and intention to treat rules
    • vander Laan M, Peterson M. Causal effect models for realistic individualized treatment and intention to treat rules. International Journal of Biostatistics 2007; 3.
    • (2007) International Journal of Biostatistics , vol.3
    • Vander Laan, M.1    Peterson, M.2
  • 25
    • 53849122359 scopus 로고    scopus 로고
    • Estimation and extrapolation of optimal treatment and testing strategies
    • Robins J, Orellana L, Rotnitzky A. Estimation and extrapolation of optimal treatment and testing strategies. Statistics in Medicine 2008; 27: 4678-4721.
    • (2008) Statistics in Medicine , vol.27 , pp. 4678-4721
    • Robins, J.1    Orellana, L.2    Rotnitzky, A.3
  • 26
    • 77950539248 scopus 로고    scopus 로고
    • Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: main content
    • Orellana L, Rotnitzky A, Robins J. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: main content. International Journal of Biostatistics 2010; 2.
    • (2010) International Journal of Biostatistics , vol.2
    • Orellana, L.1    Rotnitzky, A.2    Robins, J.3
  • 27
    • 84897047190 scopus 로고    scopus 로고
    • Alternative approaches to estimating the effects of hypothetical interventions. Proceedings of the 2008 Joint Statistical Meeting, Denver, Colorado
    • Taubman S, Robins J, Mittleman M, Hernan M. Alternative approaches to estimating the effects of hypothetical interventions. Proceedings of the 2008 Joint Statistical Meeting, Denver, Colorado, 2008.
    • (2008)
    • Taubman, S.1    Robins, J.2    Mittleman, M.3    Hernan, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.