-
1
-
-
0038718854
-
The structure and function of complex networks
-
M. Newman The structure and function of complex networks SIAM Rev. 2003 167 256
-
(2003)
SIAM Rev.
, pp. 167-256
-
-
Newman, M.1
-
2
-
-
58349088745
-
On pinning synchronization of complex dynamical networks
-
W. Yu, G. Chen, and J. Lü On pinning synchronization of complex dynamical networks Automatica 45 2009 429 435
-
(2009)
Automatica
, vol.45
, pp. 429-435
-
-
Yu, W.1
Chen, G.2
Lü, J.3
-
3
-
-
73149111723
-
Synchronization of complex dynamical networks with nonidentical nodes
-
Q. Song, J. Cao, and F. Liu Synchronization of complex dynamical networks with nonidentical nodes Phys. Lett. A 374 2010 544 551
-
(2010)
Phys. Lett. A
, vol.374
, pp. 544-551
-
-
Song, Q.1
Cao, J.2
Liu, F.3
-
4
-
-
78651360989
-
Synchronization of complex community networks with nonidentical nodes and adaptive coupling strength
-
C. Hu, J. Yu, H. Jiang, and Z. Teng Synchronization of complex community networks with nonidentical nodes and adaptive coupling strength Phys. Lett. A 375 2011 873 879
-
(2011)
Phys. Lett. A
, vol.375
, pp. 873-879
-
-
Hu, C.1
Yu, J.2
Jiang, H.3
Teng, Z.4
-
5
-
-
79952674000
-
Interactome networks and human disease
-
M. Vidal, M. Cusick, and A. Barabási Interactome networks and human disease Cell 144 2011 986 998
-
(2011)
Cell
, vol.144
, pp. 986-998
-
-
Vidal, M.1
Cusick, M.2
Barabási, A.3
-
6
-
-
84875218657
-
Identifying influential nodes in weighted networks based on evidence theory
-
D. Wei, X. Deng, Y. Deng, and S. Mahadevan Identifying influential nodes in weighted networks based on evidence theory Physica A 392 2013 2564 2575
-
(2013)
Physica A
, vol.392
, pp. 2564-2575
-
-
Wei, D.1
Deng, X.2
Deng, Y.3
Mahadevan, S.4
-
7
-
-
84884531721
-
Impulsive generalized function synchronization of complex dynamical networks
-
Q. Zhang, J. Chen, and L. Wan Impulsive generalized function synchronization of complex dynamical networks Phys. Lett. A 377 2013 2754 2760
-
(2013)
Phys. Lett. A
, vol.377
, pp. 2754-2760
-
-
Zhang, Q.1
Chen, J.2
Wan, L.3
-
8
-
-
0032482432
-
Collective dynamics of 'small-world' networks
-
DOI 10.1038/30918
-
D. Watts, and S. Strogatz Collective dynamics of 'small-world' networks Nature 393 1998 440 442 (Pubitemid 28292183)
-
(1998)
Nature
, vol.393
, Issue.6684
, pp. 440-442
-
-
Watts, D.J.1
Strogatz, S.H.2
-
9
-
-
0038483826
-
Emergence of scaling in random networks
-
A. Barabási, and R. Albert Emergence of scaling in random networks Science 286 1999 509 512
-
(1999)
Science
, vol.286
, pp. 509-512
-
-
Barabási, A.1
Albert, R.2
-
10
-
-
74049087026
-
Community detection in graphs
-
S. Fortunato Community detection in graphs Phys. Rep. 486 2010 75 174
-
(2010)
Phys. Rep.
, vol.486
, pp. 75-174
-
-
Fortunato, S.1
-
11
-
-
6244232696
-
Fractal character of fracture surfaces of metals
-
B. Mandelbrot, D. Passoja, and A. Paullay Fractal character of fracture surfaces of metals Nature 308 1984 721 722
-
(1984)
Nature
, vol.308
, pp. 721-722
-
-
Mandelbrot, B.1
Passoja, D.2
Paullay, A.3
-
13
-
-
84655163292
-
Classical and fractal analysis of vehicle demand on the ferry-boat system
-
M.A. Moret, L.Q. Antonio, and H.B. Pereira Classical and fractal analysis of vehicle demand on the ferry-boat system Physica A 391 2012 1657 1661
-
(2012)
Physica A
, vol.391
, pp. 1657-1661
-
-
Moret, M.A.1
Antonio, L.Q.2
Pereira, H.B.3
-
14
-
-
84857870704
-
Metamaterial model of fractal time
-
I.I. Smolyaninov Metamaterial model of fractal time Phys. Lett. A 376 2012 1315 1317
-
(2012)
Phys. Lett. A
, vol.376
, pp. 1315-1317
-
-
Smolyaninov, I.I.1
-
15
-
-
84863980611
-
Empirical fractal geometry analysis of some speculative financial bubbles
-
F.O. Redelico, and A.N. Proto Empirical fractal geometry analysis of some speculative financial bubbles Physica A 391 2012 5132 5138
-
(2012)
Physica A
, vol.391
, pp. 5132-5138
-
-
Redelico, F.O.1
Proto, A.N.2
-
16
-
-
84883628779
-
Brain white matter shape changes in amyotrophic lateral sclerosis (als): A fractal dimension study
-
V. Rajagopalan, Z. Liu, D. Allexandre, L. Zhang, X. Wang, E.P. Pioro, and G.H. Yue Brain white matter shape changes in amyotrophic lateral sclerosis (als): a fractal dimension study PLoS ONE 8 2013 e73614
-
(2013)
PLoS ONE
, vol.8
, pp. 73614
-
-
Rajagopalan, V.1
Liu, Z.2
Allexandre, D.3
Zhang, L.4
Wang, X.5
Pioro, E.P.6
Yue, G.H.7
-
17
-
-
84885019054
-
Emergence of fractal scale-free networks from stochastic evolution on the Cayley tree
-
P. Chełminiak Emergence of fractal scale-free networks from stochastic evolution on the Cayley tree Phys. Lett. A 377 2013 2846 2850
-
(2013)
Phys. Lett. A
, vol.377
, pp. 2846-2850
-
-
Chełminiak, P.1
-
18
-
-
84885052836
-
Multifractal behavior of wild-land and forest fire time series in Brazil
-
R.B. de Benicio, T. Stošić, P. de Figueirêdo, and B.D. Stošić Multifractal behavior of wild-land and forest fire time series in Brazil Physica A 392 2013 6367 6374
-
(2013)
Physica A
, vol.392
, pp. 6367-6374
-
-
De Benicio, R.B.1
Stošić, T.2
De Figueirêdo, P.3
Stošić, B.D.4
-
19
-
-
13444263410
-
Self-similarity of complex networks
-
DOI 10.1038/nature03248
-
C. Song, S. Havlin, and H. Makse Self-similarity of complex networks Nature 433 2005 392 395 (Pubitemid 40203314)
-
(2005)
Nature
, vol.433
, Issue.7024
, pp. 392-395
-
-
Song, C.1
Havlin, S.2
Makse, H.A.3
-
20
-
-
68949210505
-
The fractal dimensions of complex networks
-
G. Long, and X. Cai The fractal dimensions of complex networks Chin. Phys. Lett. 26 2009 088901
-
(2009)
Chin. Phys. Lett.
, vol.26
, pp. 088901
-
-
Long, G.1
Cai, X.2
-
21
-
-
79953140868
-
Shannon and von Neumann entropy of random networks with heterogeneous expected degree
-
K. Anand, G. Bianconi, and S. Severini Shannon and von Neumann entropy of random networks with heterogeneous expected degree Phys. Rev. E 83 2011 036109
-
(2011)
Phys. Rev. e
, vol.83
, pp. 036109
-
-
Anand, K.1
Bianconi, G.2
Severini, S.3
-
22
-
-
83455238787
-
Entropy of dynamical social networks
-
K. Zhao, M. Karsai, and G. Bianconi Entropy of dynamical social networks PLoS ONE 6 2011 e28116
-
(2011)
PLoS ONE
, vol.6
, pp. 28116
-
-
Zhao, K.1
Karsai, M.2
Bianconi, G.3
-
23
-
-
84864285714
-
Fractals, coherent states and self-similarity induced noncommutative geometry
-
G. Vitiello Fractals, coherent states and self-similarity induced noncommutative geometry Phys. Lett. A 376 2012 2527 2532
-
(2012)
Phys. Lett. A
, vol.376
, pp. 2527-2532
-
-
Vitiello, G.1
-
24
-
-
84876143599
-
The number of spanning trees of an infinite family of outerplanar, small-world and self-similar graphs
-
F. Comellas, A. Miralles, H. Liu, and Z. Zhang The number of spanning trees of an infinite family of outerplanar, small-world and self-similar graphs Physica A 392 2013 2803 2806
-
(2013)
Physica A
, vol.392
, pp. 2803-2806
-
-
Comellas, F.1
Miralles, A.2
Liu, H.3
Zhang, Z.4
-
25
-
-
84874525153
-
Origin of the hub spectral dimension in scale-free networks
-
S. Hwang, D.-S. Lee, and B. Kahng Origin of the hub spectral dimension in scale-free networks Phys. Rev. E 87 2013 022816
-
(2013)
Phys. Rev. e
, vol.87
, pp. 022816
-
-
Hwang, S.1
Lee, D.-S.2
Kahng, B.3
-
27
-
-
33645780366
-
Origins of fractality in the growth of complex networks
-
DOI 10.1038/nphys266, PII N266
-
C. Song, S. Havlin, and H. Makse Origins of fractality in the growth of complex networks Nat. Phys. 2 2006 275 281 (Pubitemid 43553650)
-
(2006)
Nature Physics
, vol.2
, Issue.4
, pp. 275-281
-
-
Song, C.1
Havlin, S.2
Makse, H.A.3
-
28
-
-
42749104025
-
How to calculate the fractal dimension of a complex network: The box covering algorithm
-
C. Song, L. Gallos, S. Havlin, and H. Makse How to calculate the fractal dimension of a complex network: the box covering algorithm J. Stat. Mech. Theory Exp. 2007 P03006
-
(2007)
J. Stat. Mech. Theory Exp.
, pp. 03006
-
-
Song, C.1
Gallos, L.2
Havlin, S.3
Makse, H.4
-
29
-
-
33846661167
-
Fractality in complex networks: Critical and supercritical skeletons
-
J. Kim, K.-I. Goh, G. Salvi, E. Oh, B. Kahng, and D. Kim Fractality in complex networks: critical and supercritical skeletons Phys. Rev. E 75 2007 016110
-
(2007)
Phys. Rev. e
, vol.75
, pp. 016110
-
-
Kim, J.1
Goh, K.-I.2
Salvi, G.3
Oh, E.4
Kahng, B.5
Kim, D.6
-
30
-
-
48349099885
-
A review of fractality and self-similarity in complex networks
-
L. Gallos, C. Song, and H. Makse A review of fractality and self-similarity in complex networks Physica A 386 2007 686 691
-
(2007)
Physica A
, vol.386
, pp. 686-691
-
-
Gallos, L.1
Song, C.2
Makse, H.3
-
31
-
-
55149107220
-
Accuracy of the ball-covering approach for fractal dimensions of complex networks and a rank-driven algorithm
-
L. Gao, Y. Hu, and Z. Di Accuracy of the ball-covering approach for fractal dimensions of complex networks and a rank-driven algorithm Phys. Rev. E 78 2008 046109
-
(2008)
Phys. Rev. e
, vol.78
, pp. 046109
-
-
Gao, L.1
Hu, Y.2
Di, Z.3
-
32
-
-
79957924325
-
The growth of fractal dimension of an interface evolution from the interaction of a shock wave with a rectangular block of sf6
-
H. Ng, H. Abderrahmane, K. Bates, and N. Nikiforakis The growth of fractal dimension of an interface evolution from the interaction of a shock wave with a rectangular block of sf6 Commun. Nonlinear Sci. Numer. Simul. 16 2011 4158 4162
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 4158-4162
-
-
Ng, H.1
Abderrahmane, H.2
Bates, K.3
Nikiforakis, N.4
-
34
-
-
84880289713
-
The fractal dimension of software networks as a global quality metric
-
I. Turnu, G. Concas, M. Marchesi, and R. Tonelli The fractal dimension of software networks as a global quality metric Inf. Sci. 245 2013 290 303
-
(2013)
Inf. Sci.
, vol.245
, pp. 290-303
-
-
Turnu, I.1
Concas, G.2
Marchesi, M.3
Tonelli, R.4
-
36
-
-
84886804235
-
Self-similarity in complex networks: From the view of the hub repulsion
-
H. Zhang, X. Lan, D. Wei, and Y. Deng Self-similarity in complex networks: from the view of the hub repulsion Mod. Phys. Lett. A 27 2013 1350201
-
(2013)
Mod. Phys. Lett. A
, vol.27
, pp. 1350201
-
-
Zhang, H.1
Lan, X.2
Wei, D.3
Deng, Y.4
-
37
-
-
84897021775
-
Box-covering algorithm for fractal dimension of weighted networks
-
D. Wei, Q. Liu, H. Zhang, Y. Hu, Y. Deng, and S. Mahadevan Box-covering algorithm for fractal dimension of weighted networks Sci. Rep. 3 2013 3049
-
(2013)
Sci. Rep.
, vol.3
, pp. 3049
-
-
Wei, D.1
Liu, Q.2
Zhang, H.3
Hu, Y.4
Deng, Y.5
Mahadevan, S.6
-
38
-
-
33947709421
-
Defining dimension of a complex network
-
O. Shanker Defining dimension of a complex network Mod. Phys. Lett. A 21 2007 321 326
-
(2007)
Mod. Phys. Lett. A
, vol.21
, pp. 321-326
-
-
Shanker, O.1
-
39
-
-
34248513517
-
Graph zeta function and dimension of complex network
-
O. Shanker Graph zeta function and dimension of complex network Mod. Phys. Lett. A 21 2007 639 644
-
(2007)
Mod. Phys. Lett. A
, vol.21
, pp. 639-644
-
-
Shanker, O.1
-
40
-
-
84876703884
-
Correlation dimension of complex networks
-
L. Lacasa, and J. Gómez-Gardeñes Correlation dimension of complex networks Phys. Rev. Lett. 110 2013 168703
-
(2013)
Phys. Rev. Lett.
, vol.110
, pp. 168703
-
-
Lacasa, L.1
Gómez-Gardeñes, J.2
-
45
-
-
0038147365
-
Fuzzy fractal dimensions and fuzzy modeling
-
W. Pedrycz, and A. Bargiela Fuzzy fractal dimensions and fuzzy modeling Inf. Sci. 153 2003 199 216
-
(2003)
Inf. Sci.
, vol.153
, pp. 199-216
-
-
Pedrycz, W.1
Bargiela, A.2
|