-
1
-
-
0004190197
-
-
Addison-Wesley, Reading, MA
-
A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-Wesley, Reading, MA., 1983.
-
(1983)
Data Structures and Algorithms
-
-
Aho, A.V.1
Hopcroft, J.E.2
Ullman, J.D.3
-
2
-
-
0013236534
-
String editing and longest common subsequence
-
G. Rozenberg and A. Salomaa, editors Berlin Springer Verlag
-
A. Apostolico. String editing and longest common subsequence. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, Vol. 2, pages 361-398, Berlin, 1997. Springer Verlag.
-
(1997)
Handbook of Formal Languages
, vol.2
, pp. 361-398
-
-
Apostolico, A.1
-
3
-
-
0027227137
-
A theory of parameterized pattern matching: Algorithms and applications
-
ACM
-
B. S. Baker. A theory of parameterized pattern matching: Algorithms and applications. In Proc. 25th Symposium on Theory of Computing, pages 71-80. ACM, 1993.
-
(1993)
Proc. 25th Symposium on Theory of Computing
, pp. 71-80
-
-
Baker, B.S.1
-
4
-
-
0026888975
-
Sparse dynamic programming I: Linear cost functions
-
D. Eppstein, Z. Galil, R. Giancarlo, and G. Italiano. Sparse dynamic programming I: Linear cost functions. J. of ACM, 39: 519-545, 1992.
-
(1992)
J. of ACM
, vol.39
, pp. 519-545
-
-
Eppstein, D.1
Galil, Z.2
Giancarlo, R.3
Italiano, G.4
-
5
-
-
0026886016
-
Sparse dynamic programming II: Convex and concave cost functions
-
D. Eppstein, Z. Galil, R. Giancarlo, and G. Italiano. Sparse dynamic programming II: Convex and concave cost functions. J. of ACM, 39: 546-567, 1992.
-
(1992)
J. of ACM
, vol.39
, pp. 546-567
-
-
Eppstein, D.1
Galil, Z.2
Giancarlo, R.3
Italiano, G.4
-
8
-
-
0003164225
-
Serial computations of levenshtein distances
-
A. Apostolico and Z. Galil, editors Oxford Oxford University Press
-
D.S. Hirschberg. Serial computations of Levenshtein distances. In A. Apostolico and Z. Galil, editors, Pattern Matching Algorithms, pages 123-142, Oxford, 1997. Oxford University Press.
-
(1997)
Pattern Matching Algorithms
, pp. 123-142
-
-
Hirschberg, D.S.1
-
9
-
-
0017492836
-
A fast algorithm for computing longest common subsequences
-
J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest common subsequences. Comm. of the ACM, 20: 350-353, 1977.
-
(1977)
Comm. of the ACM
, vol.20
, pp. 350-353
-
-
Hunt, J.W.1
Szymanski, T.G.2
-
10
-
-
34250239747
-
A priority queue in which initialization and queue operations take O(log log D) time
-
D. B. Johnson. A priority queue in which initialization and queue operations take O(log log D) time. Math. Sys. Th., 15: 295-309, 1982.
-
(1982)
Math. Sys. Th.
, vol.15
, pp. 295-309
-
-
Johnson, D.B.1
-
12
-
-
84967416712
-
Chaining multiple alignment fragments in sub-quadratic time
-
W. Miller and E. Myers. Chaining multiple alignment fragments in sub-quadratic time. In Proc. of 6-th ACM-SIAM SODA, pages 48-57, 1995.
-
(1995)
Proc. of 6-th ACM-SIAM SODA
, pp. 48-57
-
-
Miller, W.1
Myers, E.2
-
13
-
-
33745128489
-
An O(ND) difference algorithm and its variations
-
E. W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1: 251-266, 1986.
-
(1986)
Algorithmica
, vol.1
, pp. 251-266
-
-
Myers, E.W.1
-
14
-
-
0002484064
-
Preserving order in a forest in less than logarithmic time
-
P. van Emde Boas. Preserving order in a forest in less than logarithmic time. Info. Proc. Lett., 6: 80-82, 1977.
-
(1977)
Info. Proc. Lett.
, vol.6
, pp. 80-82
-
-
Van Emde Boas, P.1
|