-
1
-
-
51249179376
-
Euclidean minimum spanning trees and bichromatic closest pairs
-
P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning trees and bichromatic closest pairs. Discrete Comput. Geom., 6(5): 407-422, 1991.
-
(1991)
Discrete Comput. Geom.
, vol.6
, Issue.5
, pp. 407-422
-
-
Agarwal, P.K.1
Edelsbrunner, H.2
Schwarzkopf, O.3
Welzl, E.4
-
2
-
-
0004166691
-
Robust plane sweep for intersecting segments
-
INRIA, Sophia Antipolis
-
J. D. Boissonnat and F. Preparata. Robust plane sweep for intersecting segments. Technical Report 3270, INRIA, Sophia Antipolis, 1997.
-
(1997)
Technical Report 3270
-
-
Boissonnat, J.D.1
Preparata, F.2
-
5
-
-
0000428085
-
Finding minimum spanning trees
-
D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM J. Comput., 5: 724-742, 1976.
-
(1976)
SIAM J. Comput.
, vol.5
, pp. 724-742
-
-
Cheriton, D.1
Tarjan, R.E.2
-
6
-
-
84896787572
-
Cecking the convexity of polytopes and the planarity of subdivisions
-
Springer-Verlag
-
O. Devillers, G. Liotta, R. Tamassia, and F. P. Preparata. Cecking the convexity of polytopes and the planarity of subdivisions. In Algorithms and Data Structures (Proc. WADS 97), Volume 1272 of Lecture Notes Comput. Sci., pages 186-199. Springer-Verlag, 1997.
-
(1997)
Algorithms and Data Structures (Proc. WADS 97), Volume 1272 of Lecture Notes Comput. Sci.
, pp. 186-199
-
-
Devillers, O.1
Liotta, G.2
Tamassia, R.3
Preparata, F.P.4
-
8
-
-
84942026338
-
Primitives for the manipulation of general subdivisions and the computation of voronoi diagrams
-
L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph., 4: 74-123, 1985.
-
(1985)
ACM Trans. Graph.
, vol.4
, pp. 74-123
-
-
Guibas, L.J.1
Stolfi, J.2
-
9
-
-
0026897357
-
An all-round sweep algorithm for 2-dimensional nearest-neighbor problems
-
K. Hinrichs, J. Nievergelt, and P. Schorn. An all-round sweep algorithm for 2-dimensional nearest-neighbor problems. Acta Informatica, 29: 383-394, 1992.
-
(1992)
Acta Informatica
, vol.29
, pp. 383-394
-
-
Hinrichs, K.1
Nievergelt, J.2
Schorn, P.3
-
10
-
-
0025191490
-
Efficient delaunay triangulations using rational arithmetic
-
M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulations using rational arithmetic. ACM Trans. Graph., 10: 71-91, 1991.
-
(1991)
ACM Trans. Graph.
, vol.10
, pp. 71-91
-
-
Karasick, M.1
Lieber, D.2
Nackman, L.R.3
-
12
-
-
84949211208
-
Minimum spanning trees in d dimensions
-
Springer
-
D. Krznaric, C. Levcopoulos, and B. J. Nilsson. Minimum spanning trees in d dimensions. In Proc. of ESA 97, number 1284 in Lecture Notes in Computer Science, pages 341-349. Springer, 1997.
-
(1997)
Proc. of ESA 97, Number 1284 in Lecture Notes in Computer Science
, pp. 341-349
-
-
Krznaric, D.1
Levcopoulos, C.2
Nilsson, B.J.3
-
13
-
-
0028553622
-
A linear-time construction of the relative neighborhood graph from the delaunay triangulation
-
A. Lingas. A linear-time construction of the relative neighborhood graph from the Delaunay triangulation. Comput. Geom. Theory Appl., 4: 199-208, 1994.
-
(1994)
Comput. Geom. Theory Appl.
, vol.4
, pp. 199-208
-
-
Lingas, A.1
-
15
-
-
84896793152
-
Detri 2.2: A robust implementation for 3D triangulations
-
E. P. Mücke. Detri 2.2: A robust implementation for 3D triangulations. Manuscript, available at URL: http://www.geom.umn.edu:80/ software/cglist/lowdvod.html, 1996.
-
(1996)
Manuscript
-
-
Mücke, E.P.1
-
18
-
-
0020783496
-
The relative neighborhood graph with an application to minimum spanning trees
-
K. J. Supowit. The relative neighborhood graph with an application to minimum spanning trees. J. ACM, 30: 428-448, 1983.
-
(1983)
J. ACM
, vol.30
, pp. 428-448
-
-
Supowit, K.J.1
-
19
-
-
0024018677
-
Minimum spanning trees in k-dimensional space
-
P. M. Vaidya. Minimum spanning trees in k-dimensional space. SIAM J. Comput., 17: 572-582, 1988.
-
(1988)
SIAM J. Comput.
, vol.17
, pp. 572-582
-
-
Vaidya, P.M.1
-
20
-
-
0000662711
-
An O(n log n) algorithm for the all-nearest-neighbors problem
-
P. M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors problem. Discrete Comput. Geom., 4: 101-115, 1989.
-
(1989)
Discrete Comput. Geom.
, vol.4
, pp. 101-115
-
-
Vaidya, P.M.1
-
21
-
-
84896752621
-
General metrics and angle restricted voronoi diagrams
-
Univ. at Albany, November
-
Y. C. Wee, S. Chaiken, and D. E. Willard. General metrics and angle restricted voronoi diagrams. Technical Report 88-31, Comp. Sci. Dpt., Univ. at Albany, November 1988.
-
(1988)
Technical Report 88-31, Comp. Sci. Dpt.
-
-
Wee, Y.C.1
Chaiken, S.2
Willard, D.E.3
-
22
-
-
0001154535
-
On constructing minimum spanning trees in k-dimensional spaces and related problems
-
A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput., 11: 721-736, 1982.
-
(1982)
SIAM J. Comput.
, vol.11
, pp. 721-736
-
-
Yao, A.C.1
-
23
-
-
0003364706
-
Robust geometric computation
-
J. E. Goodman and J. O'Rourke, editors chapter 35 CRC Press LLC, Boca Raton, FL
-
C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 35, pages 653-668. CRC Press LLC, Boca Raton, FL, 1997.
-
(1997)
Handbook of Discrete and Computational Geometry
, pp. 653-668
-
-
Yap, C.K.1
|