메뉴 건너뛰기




Volumn 41, Issue 10, 2014, Pages 4950-4958

Sentimental causal rule discovery from Twitter

Author keywords

Causal rules; Data mining; Machine learning; Sentiment analysis; Sentimental causal rules; Twitter

Indexed keywords

LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; SENTIMENT ANALYSIS; SOCIAL NETWORKING (ONLINE);

EID: 84896529517     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.02.024     Document Type: Article
Times cited : (50)

References (20)
  • 2
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • ACM
    • R. Agrawal, T. Imieliński, and A. Swami Mining association rules between sets of items in large databases ACM SIGMOD Record Vol. 22 1993 ACM 207 216
    • (1993) ACM SIGMOD Record , vol.22 , pp. 207-216
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 3
    • 34548500564 scopus 로고    scopus 로고
    • A scalable algorithm for the market basket analysis
    • DOI 10.1016/j.jretconser.2007.02.003, PII S0969698907000148, Data Mining Applications in Retailing and Consumer Services
    • L. Cavique A scalable algorithm for the market basket analysis Journal of Retailing and Consumer Services 14 6 2007 400 407 (Pubitemid 47371961)
    • (2007) Journal of Retailing and Consumer Services , vol.14 , Issue.6 , pp. 400-407
    • Cavique, L.1
  • 4
    • 21944436304 scopus 로고    scopus 로고
    • A simple constraint-based algorithm for efficiently mining observational databases for causal relationships
    • G.F. Cooper A simple constraint-based algorithm for efficiently mining observational databases for causal relationships Data Mining and Knowledge Discovery 1 2 1997 203 224
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.2 , pp. 203-224
    • Cooper, G.F.1
  • 6
    • 84886700377 scopus 로고    scopus 로고
    • Automatically identifying a software product's quality attributes through sentiment analysis of tweets
    • Dehkharghani, R., & Yilmaz, C. (2013). Automatically identifying a software product's quality attributes through sentiment analysis of tweets. In ICSE Workshops, NaturaLiSE 2013.
    • (2013) ICSE Workshops, NaturaLiSE 2013
    • Dehkharghani, R.1    Yilmaz, C.2
  • 9
    • 84896539766 scopus 로고    scopus 로고
    • The role of text pre-processing in sentiment analysis
    • E. Haddi, X. Liu, and Y. Shi The role of text pre-processing in sentiment analysis Procedia Computer Science 17 2013 26 32
    • (2013) Procedia Computer Science , vol.17 , pp. 26-32
    • Haddi, E.1    Liu, X.2    Shi, Y.3
  • 13
    • 85128719106 scopus 로고    scopus 로고
    • Twitter sentiment analysis: The good the bad and the omg!
    • Kouloumpis, E., Wilson, T., & Moore, J. (2011). Twitter sentiment analysis: The good the bad and the omg! In ICWSM.
    • (2011) ICWSM
    • Kouloumpis, E.1    Wilson, T.2    Moore, J.3
  • 17
    • 85028156346 scopus 로고    scopus 로고
    • Twitter as a corpus for sentiment analysis and opinion mining
    • Pak, A., & Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and opinion mining. In LREC.
    • (2010) LREC
    • Pak, A.1    Paroubek, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.