메뉴 건너뛰기




Volumn 133, Issue , 2014, Pages 70-83

An error-in-variable projection to latent structure framework for monitoring technical systems with orthogonal signal components

Author keywords

Error in variables; Maximum likelihood estimation; Maximum redundancy; Multivariate statistical process control; Orthogonal signal components; Projection to latent structures

Indexed keywords

ACCURACY; ALGORITHM; ANALYTICAL ERROR; ARTICLE; ERROR IN VARIABLE; MAXIMUM LIKELIHOOD METHOD; PREDICTOR VARIABLE; PRIORITY JOURNAL; PROCESS MONITORING; PROJECTION TO LATENT STRUCTURE; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICAL PARAMETERS;

EID: 84896325111     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.02.001     Document Type: Article
Times cited : (5)

References (40)
  • 1
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis part iii: Process history based methods
    • Venkatasubramanian V., Rengaswamy R., Kavuri S.N., Yin K. A review of process fault detection and diagnosis part iii: Process history based methods. Comput. Chem. Eng. 2003, 27(3):327-346.
    • (2003) Comput. Chem. Eng. , vol.27 , Issue.3 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 2
    • 3242731248 scopus 로고    scopus 로고
    • An industrial perspective on implementing on-line applications of multivariate statistics
    • Miletic I., Quinn S., Dudzic M., Vaculik V., Champagne M. An industrial perspective on implementing on-line applications of multivariate statistics. J. Process Control 2004, 14(8):821-836.
    • (2004) J. Process Control , vol.14 , Issue.8 , pp. 821-836
    • Miletic, I.1    Quinn, S.2    Dudzic, M.3    Vaculik, V.4    Champagne, M.5
  • 3
    • 18844397336 scopus 로고    scopus 로고
    • Application of latent variable methods to process control and multivariate statistical process control in industry
    • Kourti T. Application of latent variable methods to process control and multivariate statistical process control in industry. Int. J. Adapt Control Signal Process. 2005, 19(4):213-246.
    • (2005) Int. J. Adapt Control Signal Process. , vol.19 , Issue.4 , pp. 213-246
    • Kourti, T.1
  • 4
    • 34547567795 scopus 로고    scopus 로고
    • Improved principal component modelling using the local approach
    • Kruger U., Kumar S., Littler T. Improved principal component modelling using the local approach. Automatica 2007, 43(9):1532-1542.
    • (2007) Automatica , vol.43 , Issue.9 , pp. 1532-1542
    • Kruger, U.1    Kumar, S.2    Littler, T.3
  • 5
    • 36749052831 scopus 로고    scopus 로고
    • Monitoring a complex refining process using multivariate statistics
    • AlGhazzawi A., Lennox B. Monitoring a complex refining process using multivariate statistics. Control. Eng. Pract. 2008, 16(3):294-307.
    • (2008) Control. Eng. Pract. , vol.16 , Issue.3 , pp. 294-307
    • AlGhazzawi, A.1    Lennox, B.2
  • 7
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-gaussian systems
    • Liu X., Xie L., Kruger U., Littler T., Wang S.-Q. Statistical-based monitoring of multivariate non-gaussian systems. AIChE J 2008, 54(9):2379-2391.
    • (2008) AIChE J , vol.54 , Issue.9 , pp. 2379-2391
    • Liu, X.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.-Q.5
  • 8
    • 78650303983 scopus 로고    scopus 로고
    • A unified statistical framework for monitoring multivariate systems with unknown source and error signals
    • Feital T., Kruger U., Xie L., Schubert U., Lima E.L., Pinto J.C. A unified statistical framework for monitoring multivariate systems with unknown source and error signals. Chemom. Intell. Lab. Syst. 2010, 104(2):223-232.
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , Issue.2 , pp. 223-232
    • Feital, T.1    Kruger, U.2    Xie, L.3    Schubert, U.4    Lima, E.L.5    Pinto, J.C.6
  • 9
    • 0001620483 scopus 로고    scopus 로고
    • Multivariate statistical process control; example from the chemical process industry
    • Morud T. multivariate statistical process control; example from the chemical process industry. J. Chemom. 1996, 10:669-675.
    • (1996) J. Chemom. , vol.10 , pp. 669-675
    • Morud, T.1
  • 10
    • 0035442469 scopus 로고    scopus 로고
    • Extended PLS approach for enhanced condition monitoring of industrial processes
    • Kruger U., Chen Q., Sandoz D.J., McFarlane R.C. Extended PLS approach for enhanced condition monitoring of industrial processes. AIChE J 2001, 47(9):2076-2091.
    • (2001) AIChE J , vol.47 , Issue.9 , pp. 2076-2091
    • Kruger, U.1    Chen, Q.2    Sandoz, D.J.3    McFarlane, R.C.4
  • 11
    • 33745673605 scopus 로고    scopus 로고
    • Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms
    • Lee D.S., Lee M.W., Woo S.H., Kim Y.-J., Park J.M. Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms. Ind. Eng. Chem. Res. 2006, 45(12):4335-4344.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , Issue.12 , pp. 4335-4344
    • Lee, D.S.1    Lee, M.W.2    Woo, S.H.3    Kim, Y.-J.4    Park, J.M.5
  • 12
    • 60249088159 scopus 로고    scopus 로고
    • Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals
    • Faggian A., Facco P., Doplicher F., Bezzo F., Barolo M. Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals. Chem. Eng. Res. Des. 2009, 87(3):325-334.
    • (2009) Chem. Eng. Res. Des. , vol.87 , Issue.3 , pp. 325-334
    • Faggian, A.1    Facco, P.2    Doplicher, F.3    Bezzo, F.4    Barolo, M.5
  • 13
    • 84862777809 scopus 로고    scopus 로고
    • A novel nonlinear adaptive Mooney-viscosity model based on DRPLS-GP algorithm for rubber mixing process
    • Zhang Z., Song K., Tong T.-P., Wu F. A novel nonlinear adaptive Mooney-viscosity model based on DRPLS-GP algorithm for rubber mixing process. Chemom. Intell. Lab. Syst. 2012, 112:17-23.
    • (2012) Chemom. Intell. Lab. Syst. , vol.112 , pp. 17-23
    • Zhang, Z.1    Song, K.2    Tong, T.-P.3    Wu, F.4
  • 14
    • 34247516344 scopus 로고    scopus 로고
    • Error-in-variable methods in system identification
    • Söderström T. Error-in-variable methods in system identification. Automatica 2007, 43(7):939-958.
    • (2007) Automatica , vol.43 , Issue.7 , pp. 939-958
    • Söderström, T.1
  • 16
    • 11144325691 scopus 로고
    • Partial least squares regression: a tutorial
    • Geladi P., Kowalski B.R. Partial least squares regression: a tutorial. Anal. Chim. Acta. 1986, 185:231-246.
    • (1986) Anal. Chim. Acta. , vol.185 , pp. 231-246
    • Geladi, P.1    Kowalski, B.R.2
  • 17
    • 0027530250 scopus 로고
    • Simpls, an alternative approach to partial least squares regression
    • de Jong S. Simpls, an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18:251-263.
    • (1993) Chemom. Intell. Lab. Syst. , vol.18 , pp. 251-263
    • de Jong, S.1
  • 18
    • 0033982350 scopus 로고    scopus 로고
    • On orthogonal signal correction
    • Fearn T. On orthogonal signal correction. Chemom. Intell. Lab. Syst. 2000, 50(1):47-52.
    • (2000) Chemom. Intell. Lab. Syst. , vol.50 , Issue.1 , pp. 47-52
    • Fearn, T.1
  • 19
    • 0036083139 scopus 로고    scopus 로고
    • Orthogonal projections to latent structures (O-PLS)
    • Trygg J., Wold S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16(3):119-128.
    • (2002) J. Chemom. , vol.16 , Issue.3 , pp. 119-128
    • Trygg, J.1    Wold, S.2
  • 20
    • 77957599856 scopus 로고    scopus 로고
    • Total projection to latent structures for process monitoring
    • Zhou D., Li G., Qin S.J. Total projection to latent structures for process monitoring. AIChE J 2010, 56(1):168-178.
    • (2010) AIChE J , vol.56 , Issue.1 , pp. 168-178
    • Zhou, D.1    Li, G.2    Qin, S.J.3
  • 21
    • 35648957812 scopus 로고    scopus 로고
    • Model identification and error covariance estimation from noisy data using PCA
    • Narasimhan S., Shah S.L. Model identification and error covariance estimation from noisy data using PCA. Control. Eng. Pract. 2008, 16(1):146-155.
    • (2008) Control. Eng. Pract. , vol.16 , Issue.1 , pp. 146-155
    • Narasimhan, S.1    Shah, S.L.2
  • 22
    • 0141812475 scopus 로고    scopus 로고
    • An evaluation of orthogonal signal correction applied to the calibration transfer of near-infrared spectra
    • Sjöblom J., Svensson O., Josefson M., Kullberg H., Wold S. An evaluation of orthogonal signal correction applied to the calibration transfer of near-infrared spectra. Chemom. Intell. Lab. Syst. 1998, 44(1-2):229-244.
    • (1998) Chemom. Intell. Lab. Syst. , vol.44 , Issue.1-2 , pp. 229-244
    • Sjöblom, J.1    Svensson, O.2    Josefson, M.3    Kullberg, H.4    Wold, S.5
  • 23
    • 0000442911 scopus 로고
    • THe use and interpretation of principal component analysis in applied research
    • Rao C.R. THe use and interpretation of principal component analysis in applied research. Sankhya A 1964, 26:329-358.
    • (1964) Sankhya A , vol.26 , pp. 329-358
    • Rao, C.R.1
  • 24
    • 85162676194 scopus 로고
    • PLS regression models
    • Höskuldsson A. PLS regression models. J. Chemom. 1988, 2(3):211-228.
    • (1988) J. Chemom. , vol.2 , Issue.3 , pp. 211-228
    • Höskuldsson, A.1
  • 25
    • 85162673553 scopus 로고
    • The kernal algorithm for PLS
    • Lindgren F., Geladi P., Wold S. The kernal algorithm for PLS. J. Chemom. 1993, 7(1):45-59.
    • (1993) J. Chemom. , vol.7 , Issue.1 , pp. 45-59
    • Lindgren, F.1    Geladi, P.2    Wold, S.3
  • 26
    • 0002815256 scopus 로고    scopus 로고
    • Improved PLS algorithms
    • Dayal B.S., MacGregor J.F. Improved PLS algorithms. J. Chemom. 1997, 11(1):73-85.
    • (1997) J. Chemom. , vol.11 , Issue.1 , pp. 73-85
    • Dayal, B.S.1    MacGregor, J.F.2
  • 28
    • 34249825770 scopus 로고    scopus 로고
    • Overview of total least-squares methods
    • Markovsky I., van Huffel S. Overview of total least-squares methods. Signal Process. 2007, 87(10):2283-2302.
    • (2007) Signal Process. , vol.87 , Issue.10 , pp. 2283-2302
    • Markovsky, I.1    van Huffel, S.2
  • 30
    • 0000333571 scopus 로고
    • An analysis of the total least squares problem
    • Golub G.H., van Loan C.F. An analysis of the total least squares problem. SIAM J. Numer. Anal. 1980, 17(6):883-893.
    • (1980) SIAM J. Numer. Anal. , vol.17 , Issue.6 , pp. 883-893
    • Golub, G.H.1    van Loan, C.F.2
  • 31
    • 0014328120 scopus 로고
    • A general canonical correlation index
    • Stewart D., Love W.A. A general canonical correlation index. Psychol. Bull. 1968, 70(3):160-163.
    • (1968) Psychol. Bull. , vol.70 , Issue.3 , pp. 160-163
    • Stewart, D.1    Love, W.A.2
  • 32
    • 34250300622 scopus 로고
    • Redundancy analysis and alternative for canonical correlation analysis
    • van den Wollenberg A.L. Redundancy analysis and alternative for canonical correlation analysis. Psychometrika 1977, 42(2):207-219.
    • (1977) Psychometrika , vol.42 , Issue.2 , pp. 207-219
    • van den Wollenberg, A.L.1
  • 33
    • 34250111312 scopus 로고
    • On the relationship between Fortier's simultaneous linear prediction and van den Wollenberg's redundancy analysis
    • ten Berge J.M.F. On the relationship between Fortier's simultaneous linear prediction and van den Wollenberg's redundancy analysis. Psychometrika 1985, 50(1):121-122.
    • (1985) Psychometrika , vol.50 , Issue.1 , pp. 121-122
    • ten Berge, J.M.F.1
  • 34
    • 0013953327 scopus 로고
    • Simultaneous linear prediction
    • Fortier J.J. Simultaneous linear prediction. Psychometrika 1966, 31(3):369-381.
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 369-381
    • Fortier, J.J.1
  • 35
    • 0003787146 scopus 로고
    • Princeton University Press, Priceton, N.J., U.S.A.
    • Bellman R. Dynamic Programming 1957, Princeton University Press, Priceton, N.J., U.S.A.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 37
    • 84984291168 scopus 로고
    • Comments on the PLS kernel algorithm
    • de Jong S., ter Braak C.J.F. Comments on the PLS kernel algorithm. J. Chemom. 1994, 8:169-174.
    • (1994) J. Chemom. , vol.8 , pp. 169-174
    • de Jong, S.1    Ter Braak, C.J.F.2
  • 39
    • 2842581444 scopus 로고    scopus 로고
    • Frameworks for latent variable multivariate regression
    • Burnham A., Viveros R., MacGregor J.F. Frameworks for latent variable multivariate regression. J. Chemom. 1996, 10(1):31-45.
    • (1996) J. Chemom. , vol.10 , Issue.1 , pp. 31-45
    • Burnham, A.1    Viveros, R.2    MacGregor, J.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.