메뉴 건너뛰기




Volumn 139, Issue 672, 2013, Pages 795-804

A new structure for error covariance matrices and their adaptive estimation in EnKF assimilation

Author keywords

Adaptive estimation; Data assimilation; Ensemble kalman filter; Error covariance inflation; Second order least squares estimation

Indexed keywords

ERRORS; FORECASTING; LEAST SQUARES APPROXIMATIONS;

EID: 84896296625     PISSN: 00359009     EISSN: 1477870X     Source Type: Journal    
DOI: 10.1002/qj.2000     Document Type: Article
Times cited : (20)

References (29)
  • 1
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimilations and forecasts
    • Anderson JL, Anderson SL. 1999. AMonte Carlo implementation of the non-linear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127: 2741-2758.
    • (1999) Mon. Weather Rev. , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 2
    • 34247642674 scopus 로고    scopus 로고
    • An adaptive covariance inflation error correction algorithm for ensemble filters
    • Anderson JL. 2007. An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus 59A: 210-224.
    • (2007) Tellus , vol.59 A , pp. 210-224
    • Anderson, J.L.1
  • 3
    • 58049084742 scopus 로고    scopus 로고
    • Spatially and temporally varying adaptive covariance inflation for ensemble filters
    • Anderson JL. 2009. Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus 61A: 72-83.
    • (2009) Tellus , vol.61 A , pp. 72-83
    • Anderson, J.L.1
  • 4
    • 80052424422 scopus 로고    scopus 로고
    • Evolutionary algorithm-based error parameterization methods for data assimilation
    • Bai YL, Li X. 2011. Evolutionary algorithm-based error parameterization methods for data assimilation. Mon. Weather Rev. 139: 2668-2685.
    • (2011) Mon. Weather Rev. , vol.139 , pp. 2668-2685
    • Bai, Y.L.1    Li, X.2
  • 6
    • 85019304409 scopus 로고    scopus 로고
    • Numerical Methods for Ordinary Differential Equations
    • John Wiley & Sons: Chichester
    • Butcher JC. 2003. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons: Chichester; 425 pp.
    • (2003) , pp. 425
    • Butcher, J.C.1
  • 8
    • 0000991256 scopus 로고
    • On-line estimation of error covariance parameters for atmospheric data assimilation
    • Dee DP. 1995. On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Weather Rev. 123: 1128-1145.
    • (1995) Mon. Weather Rev. , vol.123 , pp. 1128-1145
    • Dee, D.P.1
  • 9
    • 0032750664 scopus 로고    scopus 로고
    • Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology
    • Dee DP, Da Silva AM. 1999. Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology. Mon. Weather Rev. 127: 1822-1834.
    • (1999) Mon. Weather Rev. , vol.127 , pp. 1822-1834
    • Dee, D.P.1    Da Silva, A.M.2
  • 10
    • 0032728136 scopus 로고    scopus 로고
    • Maximum-likelihood estimation of forecast and observation error covariance parameters. Part II: Applications
    • Dee DP, Gaspari G, Redder C, Rukhovets L, Da Silva AM. 1999. Maximum-likelihood estimation of forecast and observation error covariance parameters. Part II: Applications. Mon. Weather Rev. 127: 1835-1849.
    • (1999) Mon. Weather Rev. , vol.127 , pp. 1835-1849
    • Dee, D.P.1    Gaspari, G.2    Redder, C.3    Rukhovets, L.4    Da Silva, A.M.5
  • 11
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen G. 1994a. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99: 10143-10162.
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 12
    • 0000601815 scopus 로고
    • Inverse methods and data assimilation in nonlinear ocean models
    • Evensen G. 1994b. Inverse methods and data assimilation in nonlinear ocean models. Physica D 77: 108-129.
    • (1994) Physica D , vol.77 , pp. 108-129
    • Evensen, G.1
  • 13
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: theoretical formulation and practical implementation
    • Evensen G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynam. 53: 343-367.
    • (2003) Ocean Dynam. , vol.53 , pp. 343-367
    • Evensen, G.1
  • 14
    • 0004236492 scopus 로고    scopus 로고
    • The Johns Hopkins University Press: Baltimore, MD
    • GolubGH,Van Loan CF. 1996. Matrix Computations. The Johns Hopkins University Press: Baltimore, MD: 694 pp.
    • (1996) Matrix Computations , pp. 694
    • Golub, G.H.1    Van Loan, C.F.2
  • 15
    • 27744494106 scopus 로고    scopus 로고
    • Accounting for the error due to unresolved scales in ensemble data assimilation: a comparison of different approaches
    • Hamill TM, Whitaker JS. 2005. Accounting for the error due to unresolved scales in ensemble data assimilation: a comparison of different approaches. Mon. Weather Rev. 133: 3132-3147.
    • (2005) Mon. Weather Rev. , vol.133 , pp. 3132-3147
    • Hamill, T.M.1    Whitaker, J.S.2
  • 16
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • Houtekamer PL, Mitchell HL. 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129: 123-137.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 17
    • 22444452396 scopus 로고    scopus 로고
    • Unified notation for data assimilation: operational, sequential and variational
    • Ide K, Courtier P, Michael G, Lorenc AC. 1997. Unified notation for data assimilation: operational, sequential and variational. J. Meteorol. Soc. Jpn 75: 181-189.
    • (1997) J. Meteorol. Soc. Jpn , vol.75 , pp. 181-189
    • Ide, K.1    Courtier, P.2    Michael, G.3    Lorenc, A.C.4
  • 18
    • 66849124453 scopus 로고    scopus 로고
    • Simultaneous estimation of covariance inflatioin and observation errors within an ensemble Kalman filter
    • Li H, Kalnay E, Miyoshi T. 2009. Simultaneous estimation of covariance inflatioin and observation errors within an ensemble Kalman filter. Q. J. R. Meteorol. Soc. 135: 523-533.
    • (2009) Q. J. R. Meteorol. Soc. , vol.135 , pp. 523-533
    • Li, H.1    Kalnay, E.2    Miyoshi, T.3
  • 19
    • 84856232855 scopus 로고    scopus 로고
    • Maximum likelihood estimation of inflation factors on forecast error covariance matrix for ensemble Kalman filter assimilation
    • Liang X, Zheng XG, Zhang SP, Wu GC, Dai YJ, Li Y. 2011. Maximum likelihood estimation of inflation factors on forecast error covariance matrix for ensemble Kalman filter assimilation. Q. J. R. Meteorol. Soc. 138: 263-273.
    • (2011) Q. J. R. Meteorol. Soc. , vol.138 , pp. 263-273
    • Liang, X.1    Zheng, X.G.2    Zhang, S.P.3    Wu, G.C.4    Dai, Y.J.5    Li, Y.6
  • 20
    • 80051700077 scopus 로고    scopus 로고
    • Predictability - a problem partly solved
    • Paper presented at Seminar on Predictability, ECMWF: Reading, U.K.
    • Lorenz EN. 1996. Predictability - a problem partly solved. Paper presented at Seminar on Predictability, ECMWF: Reading, U.K.
    • (1996)
    • Lorenz, E.N.1
  • 21
    • 0032004313 scopus 로고    scopus 로고
    • Optimal sites for supplementary weather observations: Simulation with a small model
    • Lorenz EN, Emanuel KA. 1998. Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci. 55: 399-414.
    • (1998) J. Atmos. Sci. , vol.55 , pp. 399-414
    • Lorenz, E.N.1    Emanuel, K.A.2
  • 22
    • 79954615574 scopus 로고    scopus 로고
    • TheGaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter
    • Miyoshi T. 2011. TheGaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Weather Rev. 139: 1519-1535.
    • (2011) Mon. Weather Rev. , vol.139 , pp. 1519-1535
    • Miyoshi, T.1
  • 23
    • 68749116295 scopus 로고    scopus 로고
    • A comparison of shelf observation platforms for assimilation in an eddy-resolving ocean model
    • Oke PR, Sakov P, Schulz E. 2009. A comparison of shelf observation platforms for assimilation in an eddy-resolving ocean model. Dyn. Atmos. Oceans 48: 121-142.
    • (2009) Dyn. Atmos. Oceans , vol.48 , pp. 121-142
    • Oke, P.R.1    Sakov, P.2    Schulz, E.3
  • 24
    • 54949158157 scopus 로고    scopus 로고
    • Data assimilation methods in the earth sciences
    • Reichle RH. 2008. Data assimilation methods in the earth sciences. Adv. Water Resour. 31: 1411-1418.
    • (2008) Adv. Water Resour. , vol.31 , pp. 1411-1418
    • Reichle, R.H.1
  • 25
    • 39049157179 scopus 로고    scopus 로고
    • A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters
    • Sakov P, Oke PR. 2008. A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus 60A: 361-371.
    • (2008) Tellus , vol.60 A , pp. 361-371
    • Sakov, P.1    Oke, P.R.2
  • 27
    • 55449094412 scopus 로고    scopus 로고
    • Second-order nonlinear least squares estimation
    • Wang L, Leblanc A. 2008. Second-order nonlinear least squares estimation. Ann. Inst. Stat. Math. 60: 883-900.
    • (2008) Ann. Inst. Stat. Math. , vol.60 , pp. 883-900
    • Wang, L.1    Leblanc, A.2
  • 28
    • 0037980372 scopus 로고    scopus 로고
    • A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes
    • Wang X, Bishop CH. 2003. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci. 60: 1140-1158.
    • (2003) J. Atmos. Sci. , vol.60 , pp. 1140-1158
    • Wang, X.1    Bishop, C.H.2
  • 29
    • 67649379073 scopus 로고    scopus 로고
    • An adaptive estimation of forecast error covariance parameters for Kalman filtering data assimilation
    • Zheng XG. 2009. An adaptive estimation of forecast error covariance parameters for Kalman filtering data assimilation. Adv. Atmos. Sci. 26: 154-160.
    • (2009) Adv. Atmos. Sci. , vol.26 , pp. 154-160
    • Zheng, X.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.