메뉴 건너뛰기




Volumn , Issue , 2010, Pages 13-39

Mathematical concepts of data assimilation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84895364136     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-540-74703-1_2     Document Type: Chapter
Times cited : (67)

References (72)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J. L., 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev., 129, 2884-2903.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 2
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimilations and forecasts
    • Anderson, J. L. and S. L. Anderson, 1999. A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev., 127, 2741-2758.
    • (1999) Mon. Weather Rev. , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 3
    • 34248655432 scopus 로고    scopus 로고
    • Sampling the posterior: An approach to non-Gaussian data assimilation
    • Apte, A., M. Hairer, A. M. Stuart and J. Voss, 2007. Sampling the posterior: An approach to non-Gaussian data assimilation. Physica D, 230, 50-64.
    • (2007) Physica D , vol.230 , pp. 50-64
    • Apte, A.1    Hairer, M.2    Stuart, A.M.3    Voss, J.4
  • 7
    • 2142695816 scopus 로고    scopus 로고
    • Assimilation of data into an ocean model with systematic errors near the equator
    • Bell, M. J., M. J. Martin and N. K. Nichols, 2004. Assimilation of data into an ocean model with systematic errors near the equator. Q. J. R. Meteorol. Soc., 130, 873-894.
    • (2004) Q. J. R. Meteorol. Soc. , vol.130 , pp. 873-894
    • Bell, M.J.1    Martin, M.J.2    Nichols, N.K.3
  • 8
    • 0001003688 scopus 로고
    • Numerical weather map analysis
    • Bergthorsson, P. and B. R. Döös, 1955. Numerical weather map analysis. Tellus, 7, 329-340.
    • (1955) Tellus , vol.7 , pp. 329-340
    • Bergthorsson, P.1    Döös, B.R.2
  • 10
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble trasform Kalman filter. Part I: Theoretical aspects
    • Bishop, C. H., B. J. Etherton and S. J. Majumdar, 2001. Adaptive sampling with the ensemble trasform Kalman filter. Part I: Theoretical aspects, Mon. Weather Rev., 129, 420-436.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.J.2    Majumdar, S.J.3
  • 12
    • 0022830659 scopus 로고
    • Statistical interpolation by means of successive corrections
    • Bratseth, A. M., 1986. Statistical interpolation by means of successive corrections. Tellus, 38 A, 439-447.
    • (1986) Tellus , vol.38 A , pp. 439-447
    • Bratseth, A.M.1
  • 14
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., P. J. van Leeuwen and G. Evensen, 1998. Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev., 126, 1719-1724.
    • (1998) Mon. Weather Rev. , vol.126 , pp. 1719-1724
    • Burgers, G.1    Van Leeuwen, P.J.2    Evensen, G.3
  • 15
    • 33947515129 scopus 로고    scopus 로고
    • A reduced-order approach to four-dimensional variational data assimilatio using proper orthogonal decomposition
    • Cao, Y., J. Zhu, I. M. Navon and Z. Luo, 2007. A reduced-order approach to four-dimensional variational data assimilatio using proper orthogonal decomposition. Int. J. Numeric. Meth. Fluids, 53, 1571-1583.
    • (2007) Int. J. Numeric. Meth. Fluids , vol.53 , pp. 1571-1583
    • Cao, Y.1    Zhu, J.2    Navon, I.M.3    Luo, Z.4
  • 16
    • 0032999493 scopus 로고    scopus 로고
    • Assessing the effects of data selection with the DAO physical-space statistical analysis system
    • Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz and D. Lamich, 1998. Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Weather Rev., 126, 2913-2926.
    • (1998) Mon. Weather Rev. , vol.126 , pp. 2913-2926
    • Cohn, S.E.1    Da Silva, A.2    Guo, J.3    Sienkiewicz, M.4    Lamich, D.5
  • 17
    • 0000980873 scopus 로고    scopus 로고
    • Dual formulation of four-dimensional variational assimilation
    • Courtier, P., 1997. Dual formulation of four-dimensional variational assimilation. Q. J. R. Meteorol. Soc., 123, 2449-2461.
    • (1997) Q. J. R. Meteorol. Soc. , vol.123 , pp. 2449-2461
    • Courtier, P.1
  • 18
    • 0028561614 scopus 로고
    • A strategy for operational implementation of 4D-Var, using an incremental approach
    • Courtier, P., J.-N. Thépaut and A. Hollingsworth, 1994. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc., 120, 1367-1387.
    • (1994) Q. J. R. Meteorol. Soc. , vol.120 , pp. 1367-1387
    • Courtier, P.1    Thépaut, J.-N.2    Hollingsworth, A.3
  • 19
    • 0000791134 scopus 로고
    • An optimal objective analysis system
    • Cressman, G., 1959. An optimal objective analysis system. Mon. Weather Rev., 87, 367-374.
    • (1959) Mon. Weather Rev. , vol.87 , pp. 367-374
    • Cressman, G.1
  • 20
    • 0141688455 scopus 로고    scopus 로고
    • Four-dimensional variational data assimilation: A new formulation of the background covariance matrix based on a potential vorticity representation
    • Cullen, M. J. P., 2003. Four-dimensional variational data assimilation: A new formulation of the background covariance matrix based on a potential vorticity representation.. Q. J. R. Meteorol. Soc., 129, 2777-2796.
    • (2003) Q. J. R. Meteorol. Soc. , vol.129 , pp. 2777-2796
    • Cullen, M.J.P.1
  • 21
    • 85040897227 scopus 로고
    • Cambridge University Press, Cambridge, UK
    • Daley, R., 1993. Atmospheric Data Analysis. Cambridge University Press, Cambridge, UK.
    • (1993) Atmospheric Data Analysis
    • Daley, R.1
  • 22
    • 0035302494 scopus 로고    scopus 로고
    • NAVDAS: Formulation and diagnostics
    • Daley, R. and E. Barker, 2001. NAVDAS: Formulation and diagnostics. Mon. Weather Rev., 129, 869-883.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 869-883
    • Daley, R.1    Barker, E.2
  • 23
    • 0000674568 scopus 로고    scopus 로고
    • Data assimilation in the presence of forecast bias
    • Dee, D. P. and A. M. da Silva, 1998. Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc., 117, 269-295.
    • (1998) Q. J. R. Meteorol. Soc. , vol.117 , pp. 269-295
    • Dee, D.P.1    Da Silva, A.M.2
  • 24
    • 0024907683 scopus 로고
    • A variational continuous assimilation technique
    • Derber, J. C., 1989. A variational continuous assimilation technique. Mon. Weather Rev., 117, 2437-2446.
    • (1989) Mon. Weather Rev. , vol.117 , pp. 2437-2446
    • Derber, J.C.1
  • 26
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343-367.
    • (2003) Ocean Dyn. , vol.53 , pp. 343-367
    • Evensen, G.1
  • 27
    • 33645807073 scopus 로고
    • Data assimilation in meteorology and oceanography
    • Ghil, M. and P. Malanotte-Rizzoli, 1991. Data assimilation in meteorology and oceanography. Adv. Geophys., 33, 141-266.
    • (1991) Adv. Geophys. , vol.33 , pp. 141-266
    • Ghil, M.1    Malanotte-Rizzoli, P.2
  • 28
  • 29
    • 34548808885 scopus 로고    scopus 로고
    • Approximate Gauss-Newton methods for nonlinear least-squares problems
    • Gratton, S., A. S. Lawless and N. K. Nichols, 2007. Approximate Gauss-Newton methods for nonlinear least-squares problems. SIAM J. Optim., 18, 106-132.
    • (2007) SIAM J. Optim. , vol.18 , pp. 106-132
    • Gratton, S.1    Lawless, A.S.2    Nichols, N.K.3
  • 32
    • 0000589705 scopus 로고    scopus 로고
    • Accounting for model error in data assimilation using adjoint methods
    • Berz, M., C. Bischof, G. Corliss and A. Greiwank eds., SIAM, PA
    • Griffith, A. K. and N. K. Nichols, 1996. Accounting for model error in data assimilation using adjoint methods. In Computational Differentiation: Techniques, Applications and Tools, Berz, M., C. Bischof, G. Corliss and A. Greiwank (eds.), SIAM, PA, pp 195-204.
    • (1996) Computational Differentiation: Techniques, Applications and Tools , pp. 195-204
    • Griffith, A.K.1    Nichols, N.K.2
  • 33
    • 0034433022 scopus 로고    scopus 로고
    • Adjoint techniques in data assimilation for estimating model error
    • Griffith, A. K. and N. K. Nichols, 2000. Adjoint techniques in data assimilation for estimating model error. J. Flow, Turbulence Combustion, 65, 469-488.
    • (2000) J. Flow, Turbulence Combustion , vol.65 , pp. 469-488
    • Griffith, A.K.1    Nichols, N.K.2
  • 34
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. L. and H. L. Mitchell, 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev., 126, 796-811.
    • (1998) Mon. Weather Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 35
    • 15744376917 scopus 로고    scopus 로고
    • A singular vector perspective of 4-DVar: Filtering and interpolation
    • Johnson, C., B. J. Hoskins and N. K. Nichols, 2005a. A singular vector perspective of 4-DVar: Filtering and interpolation. Q. J. R. Meteorol. Soc., 131, 1-20.
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 1-20
    • Johnson, C.1    Hoskins, B.J.2    Nichols, N.K.3
  • 37
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E., 1961. A new approach to linear filtering and prediction problems. Trans. ASME, Series D, 83, 35-44.
    • (1961) Trans. ASME, Series D , vol.83 , pp. 35-44
    • Kalman, R.E.1
  • 40
    • 27744580710 scopus 로고    scopus 로고
    • An investigation of incremental 4D-Var using non-tangent linear models
    • Lawless, A. S., S. Gratton and N. K. Nichols, 2005. An investigation of incremental 4D-Var using non-tangent linear models. Q. J. R. Meteorol. Soc., 131, 459-476.
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 459-476
    • Lawless, A.S.1    Gratton, S.2    Nichols, N.K.3
  • 41
    • 33845440376 scopus 로고    scopus 로고
    • Inner loop stopping criteria for incremental four-dimensional variational data assimilation
    • Lawless, A. S. and N. K. Nichols, 2006. Inner loop stopping criteria for incremental four-dimensional variational data assimilation. Mon. Weather Rev., 134, 3425-3435.
    • (2006) Mon. Weather Rev. , vol.134 , pp. 3425-3435
    • Lawless, A.S.1    Nichols, N.K.2
  • 42
    • 0037255418 scopus 로고    scopus 로고
    • A comparison of two methods for developing the linearization of a shallow water model
    • Lawless, A. S., N. K. Nichols and S. P. Ballard, 2003. A comparison of two methods for developing the linearization of a shallow water model. Q. J. R. Meteorol. Soc., 129, 1237-1254.
    • (2003) Q. J. R. Meteorol. Soc. , vol.129 , pp. 1237-1254
    • Lawless, A.S.1    Nichols, N.K.2    Ballard, S.P.3
  • 43
    • 45749113079 scopus 로고    scopus 로고
    • Using model reduction methods within incremental four-dimensional variational data assimilation
    • Lawless, A. S., N. K. Nichols, C. Boess and A. Bunse-Gerstner, 2008. Using model reduction methods within incremental four-dimensional variational data assimilation. Mon. Weather Rev., 136, 1511-1522.
    • (2008) Mon. Weather Rev. , vol.136 , pp. 1511-1522
    • Lawless, A.S.1    Nichols, N.K.2    Boess, C.3    Bunse-Gerstner, A.4
  • 44
    • 43049140484 scopus 로고    scopus 로고
    • Unbiased ensemble square root filters
    • Livings, D. M., S. L. Dance and N. K. Nichols, 2008. Unbiased ensemble square root filters. Physica D, 237, 1021-1028.
    • (2008) Physica D , vol.237 , pp. 1021-1028
    • Livings, D.M.1    Dance, S.L.2    Nichols, N.K.3
  • 45
    • 84975888044 scopus 로고
    • Analysis methods for numerical weather prediction
    • Lorenc, A. C., 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 112, 1177-1194.
    • (1986) Q. J. R. Meteorol. Soc. , vol.112 , pp. 1177-1194
    • Lorenc, A.C.1
  • 46
    • 0024224817 scopus 로고
    • Optimal non-linear objective analysis
    • Lorenc, A. C., 1988. Optimal non-linear objective analysis. Q. J. R. Meteorol. Soc., 114, 205-240.
    • (1988) Q. J. R. Meteorol. Soc. , vol.114 , pp. 205-240
    • Lorenc, A.C.1
  • 47
    • 0026313123 scopus 로고
    • The Met. Office analysis correction data assimilation scheme
    • Lorenc, A. C., R. S. Bell and B. Macpherson, 1991. The Met. Office analysis correction data assimilation scheme. Q. J. R. Meteorol. Soc., 117, 59-89.
    • (1991) Q. J. R. Meteorol. Soc. , vol.117 , pp. 59-89
    • Lorenc, A.C.1    Bell, R.S.2    Macpherson, B.3
  • 49
    • 84895270565 scopus 로고    scopus 로고
    • Estimation of systematic error in an equatorial ocean model using data assimilation
    • Baines, M. J. ed., ICFD, Oxford
    • Martin, M. J., M. J. Bell and N. K. Nichols, 2001. Estimation of systematic error in an equatorial ocean model using data assimilation. In Numerical Methods for Fluid Dynamics VII, Baines, M. J. (ed.), ICFD, Oxford, pp 423-430.
    • (2001) Numerical Methods for Fluid Dynamics VII , pp. 423-430
    • Martin, M.J.1    Bell, M.J.2    Nichols, N.K.3
  • 51
    • 33745313011 scopus 로고    scopus 로고
    • A comparison of error subspace Kalman filters
    • Nerger, L., W. Hiller and J. Schroeter, 2005. A comparison of error subspace Kalman filters. Tellus, 57 A, 715-735.
    • (2005) Tellus , vol.57 A , pp. 715-735
    • Nerger, L.1    Hiller, W.2    Schroeter, J.3
  • 52
    • 16244370169 scopus 로고    scopus 로고
    • Data assimilation: Aims and basic concepts
    • NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W. A. Lahoz eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 378pp
    • Nichols, N. K., 2003a. Data assimilation: Aims and basic concepts. In Data Assimilation for the Earth System, NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W. A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 9-20, 378pp.
    • (2003) Data Assimilation for the Earth System , pp. 9-20
    • Nichols, N.K.1
  • 53
    • 33744730611 scopus 로고    scopus 로고
    • Treating model error in 3-D and 4-D data assimilation
    • NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W. A. Lahoz eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 378pp
    • Nichols, N. K., 2003b. Treating model error in 3-D and 4-D data assimilation. In Data Assimilation for the Earth System, NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W. A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 127-135, 378pp.
    • (2003) Data Assimilation for the Earth System , pp. 127-135
    • Nichols, N.K.1
  • 55
    • 0035335074 scopus 로고    scopus 로고
    • Stochastic methods for sequential data assimilation in strongly non-linear systems
    • Pham, D. T., 2001. Stochastic methods for sequential data assimilation in strongly non-linear systems. Mon. Weather Rev., 129, 1194-1207.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 1194-1207
    • Pham, D.T.1
  • 56
    • 0027845657 scopus 로고
    • A comparison between four-dimensional variational assimilation and simplified sequential assimilation relying on three-dimensionsal variational analysis
    • Rabier, F., P. Courtier, J. Pailleux, O. Talalgrand and D. Vasiljevic, 1993. A comparison between four-dimensional variational assimilation and simplified sequential assimilation relying on three-dimensionsal variational analysis.. Q. J. R. Meteorol. Soc., 119, 845-880.
    • (1993) Q. J. R. Meteorol. Soc. , vol.119 , pp. 845-880
    • Rabier, F.1    Courtier, P.2    Pailleux, J.3    Talalgrand, O.4    Vasiljevic, D.5
  • 57
    • 0342804504 scopus 로고    scopus 로고
    • The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics
    • Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf and A. Simmons, 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc., 126, 1143-1170.
    • (2000) Q. J. R. Meteorol. Soc. , vol.126 , pp. 1143-1170
    • Rabier, F.1    Järvinen, H.2    Klinker, E.3    Mahfouf, J.-F.4    Simmons, A.5
  • 59
    • 33645978720 scopus 로고    scopus 로고
    • Development of NAVDAS-AR: Non-linear formulation and outer loop tests
    • Rosmond, T. and L. Xu, 2006. Development of NAVDAS-AR: Non-linear formulation and outer loop tests. Tellus, 58 A, 45-58.
    • (2006) Tellus , vol.58 A , pp. 45-58
    • Rosmond, T.1    Xu, L.2
  • 60
    • 0000783155 scopus 로고
    • Some basic formulisms on numerical variational analysis
    • Sasaki, Y., 1970. Some basic formulisms on numerical variational analysis. Mon. Weather Rev., 98, 875-883.
    • (1970) Mon. Weather Rev. , vol.98 , pp. 875-883
    • Sasaki, Y.1
  • 62
    • 0001784582 scopus 로고
    • A study on the dynamics of four-dimensional data assimilation
    • Talagrand, O., 1981. A study on the dynamics of four-dimensional data assimilation. Tellus, 33, 43-60.
    • (1981) Tellus , vol.33 , pp. 43-60
    • Talagrand, O.1
  • 64
    • 33846660865 scopus 로고    scopus 로고
    • Incremental 4D-Var Convergence Study
    • European Centre for Medium-Range Weather Forecasts, Reading, UK
    • Trémolet, Y., 2005. Incremental 4D-Var Convergence Study, ECMWF Technical Memorandum, No. 469, European Centre for Medium-Range Weather Forecasts, Reading, UK.
    • (2005) ECMWF Technical Memorandum, No. 469
    • Trémolet, Y.1
  • 65
    • 0142010030 scopus 로고    scopus 로고
    • A variance minimizing filter for large scale applications
    • van Leeuwen, P. J., 2003. A variance minimizing filter for large scale applications. Mon. Weather Rev., 131, 2071-2084.
    • (2003) Mon. Weather Rev. , vol.131 , pp. 2071-2084
    • Van Leeuwen, P.J.1
  • 66
    • 33750450033 scopus 로고    scopus 로고
    • Model-reduced variational data assinilation
    • Vermeulen, P. T. M. and A. W. Heemink, 2006. Model-reduced variational data assinilation. Mon. Weather Rev., 134, 2888-2899.
    • (2006) Mon. Weather Rev. , vol.134 , pp. 2888-2899
    • Vermeulen, P.T.M.1    Heemink, A.W.2
  • 67
    • 0035390475 scopus 로고    scopus 로고
    • Correlation modelling on the sphere using a generalized diffusion equation
    • Weaver, A. and P. Courtier, 2001. Correlation modelling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc., 127, 1815-1846.
    • (2001) Q. J. R. Meteorol. Soc. , vol.127 , pp. 1815-1846
    • Weaver, A.1    Courtier, P.2
  • 68
    • 0036849510 scopus 로고    scopus 로고
    • Model reduction via the proper orthogonal decomposition
    • Willcox, K. and J. Peraire, 2002. Model reduction via the proper orthogonal decomposition. AIAA J., 40, 2323-2330.
    • (2002) AIAA J. , vol.40 , pp. 2323-2330
    • Willcox, K.1    Peraire, J.2
  • 69
    • 39049142343 scopus 로고    scopus 로고
    • Use of potential vorticity for incremental data assimilation
    • Wlasak, M. A., N. K. Nichols and I. Roulstone, 2006. Use of potential vorticity for incremental data assimilation. Q. J. R. Meteorol. Soc., 132, 2867-2886.
    • (2006) Q. J. R. Meteorol. Soc. , vol.132 , pp. 2867-2886
    • Wlasak, M.A.1    Nichols, N.K.2    Roulstone, I.3
  • 70
    • 27744525087 scopus 로고    scopus 로고
    • Development of NAVDAS-AR: Formulation and initial tests of the linear problem
    • Xu, L., T. Rosmond and R. Daley, 2005. Development of NAVDAS-AR: Formulation and initial tests of the linear problem. Tellus, 57 A, 546-559.
    • (2005) Tellus , vol.57 A , pp. 546-559
    • Xu, L.1    Rosmond, T.2    Daley, R.3
  • 71
    • 0000649871 scopus 로고    scopus 로고
    • A general weak constraint applicable to operational 4D-Var data assimilation systems
    • Zupanski, D., 1997. A general weak constraint applicable to operational 4D-Var data assimilation systems. Mon. Weather Rev., 123, 1112-1127.
    • (1997) Mon. Weather Rev. , vol.123 , pp. 1112-1127
    • Zupanski, D.1
  • 72
    • 24944523803 scopus 로고    scopus 로고
    • Maximum likelihood ensemble filter: Theoretical aspects
    • Zupanski, M., 2005. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Weather Rev., 133, 1710-1726.
    • (2005) Mon. Weather Rev. , vol.133 , pp. 1710-1726
    • Zupanski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.