메뉴 건너뛰기




Volumn 21, Issue 3, 2014, Pages 1658-1670

Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring

Author keywords

ANFIS; Dissolved oxygen; Johor River; Water quality prediction

Indexed keywords

OXYGEN;

EID: 84895075043     PISSN: 09441344     EISSN: 16147499     Source Type: Journal    
DOI: 10.1007/s11356-013-2048-4     Document Type: Article
Times cited : (112)

References (33)
  • 1
    • 77956684693 scopus 로고    scopus 로고
    • Evaluation the efficiency of radial basis function neural network for prediction of water quality parameters
    • Ahmed AN, Elshafie A, Karim O, Jaffar O (2009) Evaluation the efficiency of radial basis function neural network for prediction of water quality parameters. Eng Intell Syst 17(4): 221-231.
    • (2009) Eng Intell Syst , vol.17 , Issue.4 , pp. 221-231
    • Ahmed, A.N.1    Elshafie, A.2    Karim, O.3    Jaffar, O.4
  • 4
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang FJ, Chang YT (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv Water Resour 29(1): 1-10.
    • (2006) Adv Water Resour , vol.29 , Issue.1 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 5
    • 0242694458 scopus 로고    scopus 로고
    • Hydrology and assessment of lotic water quality in Cuttack City, India
    • Das J, Acharya BC (2003) Hydrology and assessment of lotic water quality in Cuttack City, India. J Water Air Soil Pollut 150: 163-175.
    • (2003) J Water Air Soil Pollut , vol.150 , pp. 163-175
    • Das, J.1    Acharya, B.C.2
  • 6
    • 56849087353 scopus 로고
    • Classification of Malaysian Rivers-methodology and classification of ten rivers
    • Department of Environment (DOE)
    • Department of Environment (DOE) (1994) Classification of Malaysian Rivers-methodology and classification of ten rivers. Min Technol Environ 2: 4. 101-4. 104.
    • (1994) Min Technol Environ , vol.2 , pp. 101-104
  • 7
    • 75049084570 scopus 로고    scopus 로고
    • Department of Environment (DOE), Kuala Lumpur: DOE Documents
    • Department of Environment (DOE) (2003) Water quality management in Malaysia. DOE Documents, Kuala Lumpur.
    • (2003) Water Quality Management in Malaysia
  • 8
    • 56249121165 scopus 로고    scopus 로고
    • Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
    • Dogan E, Sengorur B, Koklu R (2009) Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manage 90: 1229-1235.
    • (2009) J Environ Manage , vol.90 , pp. 1229-1235
    • Dogan, E.1    Sengorur, B.2    Koklu, R.3
  • 9
    • 0000255034 scopus 로고    scopus 로고
    • Quantitative description of element concentrations in longitudinal river profiles by multiway PLS models
    • Einax JW, Aulinger A, Tumpling WV, Prange A (1999) Quantitative description of element concentrations in longitudinal river profiles by multiway PLS models. Fres J Anal Chem 363: 655-661.
    • (1999) Fres J Anal Chem , vol.363 , pp. 655-661
    • Einax, J.W.1    Aulinger, A.2    Tumpling, W.V.3    Prange, A.4
  • 10
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan high dam
    • doi:10.1007/s11269-006-9027-1
    • El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan high dam. Water Res Manag 21: 533-556. doi: 10. 1007/s11269-006-9027-1.
    • (2007) Water Res Manag , vol.21 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 11
    • 63049105407 scopus 로고    scopus 로고
    • Neural network model for Nile River inflow forecasting based on correlation analysis of historical inflow data
    • El-Shafie A, Noureldin AE, Taha MR, Basri H (2008) Neural network model for Nile River inflow forecasting based on correlation analysis of historical inflow data. J Appl Sci 8(24): 4487-4499.
    • (2008) J Appl Sci , vol.8 , Issue.24 , pp. 4487-4499
    • El-Shafie, A.1    Noureldin, A.E.2    Taha, M.R.3    Basri, H.4
  • 13
    • 0028602193 scopus 로고
    • Modeling algal blooms in freshwaters using artificial neural networks
    • Environment Systems, P. Zanetti (Ed.), Boston: Computational Mechanics Publications
    • French M, Recknagel F (1994) Modeling algal blooms in freshwaters using artificial neural networks. In: Zanetti P (ed) Computer Techniques in Environmental Studies V, vol II, Environment Systems. Computational Mechanics Publications, Boston, pp 87-94.
    • (1994) Computer Techniques in Environmental Studies V , vol.II , pp. 87-94
    • French, M.1    Recknagel, F.2
  • 17
    • 38349188537 scopus 로고    scopus 로고
    • Modeling dissolved oxygen dynamics in coastal lagoons
    • Hull V, Parrella L, Falcucci M (2008) Modeling dissolved oxygen dynamics in coastal lagoons. Ecol Model 2: 468-480.
    • (2008) Ecol Model , vol.2 , pp. 468-480
    • Hull, V.1    Parrella, L.2    Falcucci, M.3
  • 18
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference systems
    • Jang JSR (1993) ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans Syst Man Cyb 23(3): 665-685.
    • (1993) IEEE Trans Syst Man Cyb , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 20
    • 0036827271 scopus 로고    scopus 로고
    • Fuzzy logic model of Langmuir probe discharge data
    • Kim B, Park JH, Kim BS (2002) Fuzzy logic model of Langmuir probe discharge data. Comput Chem 26(6): 573-581.
    • (2002) Comput Chem , vol.26 , Issue.6 , pp. 573-581
    • Kim, B.1    Park, J.H.2    Kim, B.S.3
  • 21
    • 37849186107 scopus 로고    scopus 로고
    • Using artificial neural network for reservoir eutrophication prediction
    • Kuo JT, Hsieh MH, Lung, WS, She N, (2007) Using artificial neural network for reservoir eutrophication prediction. Ecol. Model. 200: 171-177.
    • (2007) Ecol. Model , vol.200 , pp. 171-177
    • Kuo, J.T.1    Hsieh, M.H.2    Lung, W.S.3    She, N.4
  • 22
    • 65249087289 scopus 로고    scopus 로고
    • Prediction of Johor River water quality parameters using artificial neural networks
    • Najah A, Elshafie A, Karim OA, Jaffar O (2009) Prediction of Johor River water quality parameters using artificial neural networks. European J Sci Res 28(3): 422-435.
    • (2009) European J Sci Res , vol.28 , Issue.3 , pp. 422-435
    • Najah, A.1    Elshafie, A.2    Karim, O.A.3    Jaffar, O.4
  • 23
    • 84865653044 scopus 로고    scopus 로고
    • Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation
    • Najah AA, El-Shafie A, Karim OA, Jaafar O, (2010) Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Computing and Applications, pp. 1-9.
    • (2010) Neural Computing and Applications , pp. 1-9
    • Najah, A.A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4
  • 24
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part 1: a discussion of principles
    • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part 1: a discussion of principles. J Hydrol 10(3): 282-290.
    • (1970) J Hydrol , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 25
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani S, Liong SY, Tkalich P (2008) An ANN application for water quality forecasting. Mar Pollut Bull 56: 1586-1597.
    • (2008) Mar Pollut Bull , vol.56 , pp. 1586-1597
    • Palani, S.1    Liong, S.Y.2    Tkalich, P.3
  • 27
    • 33749656875 scopus 로고    scopus 로고
    • Dissolved oxygen estimation using artificial neural network for water quality control
    • Sengorur B, Dogan E, Koklu R, Samandar A (2006) Dissolved oxygen estimation using artificial neural network for water quality control. Fresen Environ Bull 15(9a): 1064-1067.
    • (2006) Fresen Environ Bull , vol.15 , Issue.9 a , pp. 1064-1067
    • Sengorur, B.1    Dogan, E.2    Koklu, R.3    Samandar, A.4
  • 28
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality-a case study
    • Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality-a case study. Ecol Model 220: 888-895.
    • (2009) Ecol Model , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 29
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • Sugeno M, Kang GT (1988) Structure identification of fuzzy model. Fuzzy Sets Syst 28: 15-33.
    • (1988) Fuzzy Sets Syst , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 30
    • 34548262011 scopus 로고    scopus 로고
    • Study of multivariate linear regression analysis model for ground water quality prediction
    • Xiang SL, Liu ZM, Ma LP (2006) Study of multivariate linear regression analysis model for ground water quality prediction. Guizhou Science 24(1): 60-62.
    • (2006) Guizhou Science , vol.24 , Issue.1 , pp. 60-62
    • Xiang, S.L.1    Liu, Z.M.2    Ma, L.P.3
  • 31
    • 0030725850 scopus 로고    scopus 로고
    • Novel application of a backpropagation artificial neural network model formulated to predict algal bloom
    • Yabunaka KI, Hosomi M, Murakami A (1997) Novel application of a backpropagation artificial neural network model formulated to predict algal bloom. Water Sci Technol 36(5): 89-97.
    • (1997) Water Sci Technol , vol.36 , Issue.5 , pp. 89-97
    • Yabunaka, K.I.1    Hosomi, M.2    Murakami, A.3
  • 32
    • 34548260729 scopus 로고    scopus 로고
    • Water quality forecast through application of BP neural network at Yuquio reservoir
    • Ying Z, Jun N, Fuyi C, Liang G (2007) Water quality forecast through application of BP neural network at Yuquio reservoir. J Zhejiang Univ Sci A 8: 1482-1487.
    • (2007) J Zhejiang Univ Sci A , vol.8 , pp. 1482-1487
    • Ying, Z.1    Jun, N.2    Fuyi, C.3    Liang, G.4
  • 33
    • 77649216766 scopus 로고    scopus 로고
    • Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine-an artificial neural network approach
    • Zaqoot HA, Ansari AK, Unar MA (2009) Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine-an artificial neural network approach. Water Sci Technol 60(12): 3051-3059.
    • (2009) Water Sci Technol , vol.60 , Issue.12 , pp. 3051-3059
    • Zaqoot, H.A.1    Ansari, A.K.2    Unar, M.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.