-
1
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
doi:10.1038/238037a0
-
Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37-38. doi: 10. 1038/238037a0.
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
2
-
-
0039129509
-
Environmental applications of semiconductor photocatalysis
-
doi:10.1021/cr00033a004
-
Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95: 69-96. doi: 10. 1021/cr00033a004.
-
(1995)
Chem Rev
, vol.95
, pp. 69-96
-
-
Hoffmann, M.R.1
Martin, S.T.2
Choi, W.3
Bahnemann, D.W.4
-
4
-
-
82955217248
-
2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells
-
doi:10.1002/adfm.201100828
-
2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells. Adv Funct Mater 21: 4167-4172. doi: 10. 1002/adfm. 201100828.
-
(2011)
Adv Funct Mater
, vol.21
, pp. 4167-4172
-
-
Wu, X.1
Chen, Z.2
Lu, G.Q.M.3
Wang, L.4
-
5
-
-
77956877334
-
2 photocatalysis for air treatment: patents' overview
-
doi:10.1016/j.apcatb.2010.05.011
-
2 photocatalysis for air treatment: patents' overview. Appl Catal B: Environ 99: 448-460. doi: 10. 1016/j. apcatb. 2010. 05. 011.
-
(2010)
Appl Catal B: Environ
, vol.99
, pp. 448-460
-
-
Yaron, P.1
-
7
-
-
84860386931
-
2 films and its effects on recombination losses in dye sensitized solar cells
-
doi:10.1039/C2EE21341A
-
2 films and its effects on recombination losses in dye sensitized solar cells. Energy Environ Sci 5: 7203-7215. doi: 10. 1039/C2EE21341A.
-
(2012)
Energy Environ Sci
, vol.5
, pp. 7203-7215
-
-
O'Regan, B.1
Xiaoe, L.2
Ghaddar, T.3
-
8
-
-
84863115720
-
2 nanorods on transparent conductive oxide as photoanodes
-
doi:10.1021/jp209130x
-
2 nanorods on transparent conductive oxide as photoanodes. J Phys Chem C 116: 3266-3273. doi: 10. 1021/jp209130x.
-
(2012)
J Phys Chem C
, vol.116
, pp. 3266-3273
-
-
Wang, M.1
Bai, J.2
Le Formal, F.3
Moon, S.J.4
Cevey-Ha, L.5
Humphry-Baker, R.6
Grätzel, C.7
Zakeeruddin, S.M.8
Grätzel, M.9
-
9
-
-
84863426842
-
2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation
-
doi:10.1016/j.powtec.2012.05.018
-
2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol 228: 210-218. doi: 10. 1016/j. powtec. 2012. 05. 018.
-
(2012)
Powder Technol
, vol.228
, pp. 210-218
-
-
Sun, T.1
Fan, J.2
Liu, E.3
Liu, L.4
Wang, Y.5
Dai, H.6
Yang, Y.7
Hou, W.8
Hu, X.9
Jiang, Z.10
-
11
-
-
84856347991
-
2 hollow microsphere composites with catalytic activity in dark
-
doi:10.1016/j.cej.2010.12.007
-
2 hollow microsphere composites with catalytic activity in dark. Chem Eng J 181-182: 734-739. doi: 10. 1016/j. cej. 2010. 12. 007.
-
(2012)
Chem Eng J
, vol.181-182
, pp. 734-739
-
-
Li, Y.1
Chen, L.2
Guo, Y.3
Sun, X.4
Wei, Y.5
-
17
-
-
65849115129
-
Efficient gas phase photodecomposition of acetone by Ru-doped Titania
-
doi:10.1016/j.apcatb.2009.01.023
-
Houšková V, Stengl V, Bakardjieva S, Murafa N, Tyrpekl V (2009) Efficient gas phase photodecomposition of acetone by Ru-doped Titania. Appl Catal, B 89: 613-619. doi: 10. 1016/j. apcatb. 2009. 01. 023.
-
(2009)
Appl Catal, B
, vol.89
, pp. 613-619
-
-
Houšková, V.1
Stengl, V.2
Bakardjieva, S.3
Murafa, N.4
Tyrpekl, V.5
-
19
-
-
78049344369
-
Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons
-
doi:10.1021/jp101633u
-
Christopher P, Ingram DB, Linic S (2010) Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J Phys Chem C 114: 9173-9177. doi: 10. 1021/jp101633u.
-
(2010)
J Phys Chem C
, vol.114
, pp. 9173-9177
-
-
Christopher, P.1
Ingram, D.B.2
Linic, S.3
-
21
-
-
38949188902
-
A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide
-
doi:10.1021/ja076503n
-
Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130: 1676-1680. doi: 10. 1021/ja076503n.
-
(2008)
J Am Chem Soc
, vol.130
, pp. 1676-1680
-
-
Awazu, K.1
Fujimaki, M.2
Rockstuhl, C.3
Tominaga, J.4
Murakami, H.5
Ohki, Y.6
Yoshida, N.7
Watanabe, T.8
-
22
-
-
78651067078
-
2 evolution in photocatalytic water splitting
-
doi:10.1021/jp1074048
-
2 evolution in photocatalytic water splitting. J Phys Chem C 115: 210-216. doi: 10. 1021/jp1074048.
-
(2010)
J Phys Chem C
, vol.115
, pp. 210-216
-
-
Chen, J.J.1
Wu, J.C.2
Wu, P.C.3
Tsai, D.P.4
-
23
-
-
84877595655
-
2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting
-
doi:10.1007/s11468-012-9418-5
-
2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 1-8: 502-508. doi: 10. 1007/s11468-012-9418-5.
-
(2012)
Plasmonics
, vol.1-8
, pp. 502-508
-
-
Wu, F.1
Hu, X.2
Fan, J.3
Liu, E.4
Sun, T.5
Kang, L.6
Hou, W.7
Zhu, C.8
Liu, H.9
-
25
-
-
84863036361
-
2 nanospheres decorated by Au nanoparticles with controlled configuration
-
doi:10.1021/jp209520m
-
2 nanospheres decorated by Au nanoparticles with controlled configuration. J Phys Chem C 116: 2500-2506. doi: 10. 1021/jp209520m.
-
(2012)
J Phys Chem C
, vol.116
, pp. 2500-2506
-
-
Kochuveedu, S.T.1
Kim, D.P.2
Kim, D.H.3
-
26
-
-
70349786088
-
2 nanotube arrays
-
doi:10.1021/jp905247j
-
2 nanotube arrays. J Phys Chem C 113: 16394-16401. doi: 10. 1021/jp905247j.
-
(2009)
J Phys Chem C
, vol.113
, pp. 16394-16401
-
-
Yu, J.1
Dai, G.2
Huang, B.3
-
27
-
-
79951675013
-
2 nanotubes as active catalysts for ethanol oxidation
-
doi:10.1016/j.jcat.2010.12.011
-
2 nanotubes as active catalysts for ethanol oxidation. J Catal 278: 276-287. doi: 10. 1016/j. jcat. 2010. 12. 011.
-
(2011)
J Catal
, vol.278
, pp. 276-287
-
-
Liang, Y.Q.1
Cui, Z.D.2
Zhu, S.L.3
Liu, Y.4
Yang, X.J.5
-
28
-
-
77950955040
-
2 prepared by microemulsion method: surface properties, bio- and photoactivity
-
doi:10.1016/j.seppur.2010.03.002
-
2 prepared by microemulsion method: surface properties, bio- and photoactivity. Sep Purif Technol 72: 309-318. doi: 10. 1016/j. seppur. 2010. 03. 002.
-
(2010)
Sep Purif Technol
, vol.72
, pp. 309-318
-
-
Zielińska, A.1
Kowalska, E.2
Sobczak, J.W.3
Łacka, I.4
Gazda, M.5
Ohtani, B.6
Hupka, J.7
Zaleska, A.8
-
29
-
-
77949540434
-
A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly
-
doi:10.1007/s11468-009-9120-4
-
Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 5: 85-97. doi: 10. 1007/s11468-009-9120-4.
-
(2010)
Plasmonics
, vol.5
, pp. 85-97
-
-
Amendola, V.1
Bakr, O.M.2
Stellacci, F.3
-
30
-
-
84881612506
-
Theoretical study of the local surface plasmon resonance properties of silver nanosphere clusters
-
doi: 10. 1007/s11468-013-9541-y, 10
-
Ma YW, Wu ZW, Zhang LH, Zhang J, Jian GS, Pan S (2013). Theoretical study of the local surface plasmon resonance properties of silver nanosphere clusters. Plasmonics 1-10. doi: 10. 1007/s11468-013-9541-y.
-
(2013)
Plasmonics
, vol.1
-
-
Ma, Y.W.1
Wu, Z.W.2
Zhang, L.H.3
Zhang, J.4
Jian, G.S.5
Pan, S.6
-
35
-
-
63949083177
-
2 to fuel
-
doi:10.1007/s10563-009-9065-9
-
2 to fuel. Catal Surv Asia 13: 30-40. doi: 10. 1007/s10563-009-9065-9.
-
(2009)
Catal Surv Asia
, vol.13
, pp. 30-40
-
-
Wu, J.C.1
-
37
-
-
33646756202
-
2 pellets
-
doi:10.1016/j.cattod.2006.02.057
-
2 pellets. Catal Today 115: 269-273. doi: 10. 1016/j. cattod. 2006. 02. 057.
-
(2006)
Catal Today
, vol.115
, pp. 269-273
-
-
Tan, S.S.1
Zou, L.2
Hu, E.3
|