메뉴 건너뛰기




Volumn 6, Issue 11, 2013, Pages 5897-5920

Price forecasting in the day-ahead energy market by an iterative method with separate normal price and price spike frameworks

Author keywords

Compound classifier; Electricity price forecasts; Hybrid methodology; Input feature selection; Price spike forecasts

Indexed keywords

COMMERCE; COSTS; FORECASTING; ITERATIVE METHODS; MATHEMATICAL TRANSFORMATIONS; POWER QUALITY; WAVELET TRANSFORMS;

EID: 84894632834     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en6115897     Document Type: Article
Times cited : (56)

References (50)
  • 3
    • 84870758492 scopus 로고    scopus 로고
    • Optimal bidding strategies for wind power producers in the day-ahead electricity market
    • Zhang, H.; Gao, F.; Wu, J.; Liu, K.; Liu, X. Optimal bidding strategies for wind power producers in the day-ahead electricity market. Energies 2012, 5, 4804-4823.
    • (2012) Energies , vol.5 , pp. 4804-4823
    • Zhang, H.1    Gao, F.2    Wu, J.3    Liu, K.4    Liu, X.5
  • 4
    • 84880923235 scopus 로고    scopus 로고
    • Power spot price models with negative prices
    • Schneider, S. Power spot price models with negative prices. J. Energy Mark. 2012, 4, 77-102.
    • (2012) J. Energy Mark. , vol.4 , pp. 77-102
    • Schneider, S.1
  • 6
    • 77953594909 scopus 로고    scopus 로고
    • A new recursive neural network algorithm to forecast electricity price for PJM day-ahead market
    • Mandal, P.; Srivastava, A.K.; Senjyu, T.; Negnevitsky, M. A new recursive neural network algorithm to forecast electricity price for PJM day-ahead market. Int. J. Energy Res. 2010, 34, 507-522.
    • (2010) Int. J. Energy Res. , vol.34 , pp. 507-522
    • Mandal, P.1    Srivastava, A.K.2    Senjyu, T.3    Negnevitsky, M.4
  • 7
    • 84870728128 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting using a hybrid principal component analysis network
    • Hong, Y.; Wu, C.-P. Day-ahead electricity price forecasting using a hybrid principal component analysis network. Energies 2012, 5, 4711-4725.
    • (2012) Energies , vol.5 , pp. 4711-4725
    • Hong, Y.1    Wu, C.-P.2
  • 8
    • 34648837104 scopus 로고    scopus 로고
    • Artificial intelligence solution to electricity price forecasting problem
    • Georgilakis, P.S. Artificial intelligence solution to electricity price forecasting problem. Appl. Artif. Intell. 2007, 21, 707-727.
    • (2007) Appl. Artif. Intell. , vol.21 , pp. 707-727
    • Georgilakis, P.S.1
  • 9
    • 33745842927 scopus 로고    scopus 로고
    • Market Clearing Price Forecasting in Deregulated Electricity Markets Using Adaptively Trained Neural Networks
    • Heraklion, Greece, 18-20 May 2006
    • Georgilakis, P.S. Market Clearing Price Forecasting in Deregulated Electricity Markets Using Adaptively Trained Neural Networks. In Proceedings of the fourth Helenic Conference on Artificial Intelligence, Heraklion, Greece, 18-20 May 2006; pp. 56-66.
    • Proceedings of the fourth Helenic Conference on Artificial Intelligence, , pp. 56-66
    • Georgilakis, P.S.1
  • 10
    • 77954834795 scopus 로고    scopus 로고
    • A hybrid model for day-ahead price forecasting
    • Wu, L.; Shahidehpour, M. A hybrid model for day-ahead price forecasting. IEEE Trans. Power Syst. 2010, 25, 1519-1530.
    • (2010) IEEE Trans. Power Syst. , vol.25 , pp. 1519-1530
    • Wu, L.1    Shahidehpour, M.2
  • 11
    • 79251619057 scopus 로고    scopus 로고
    • Price forecasting of day-ahead electricity markets using a hybrid forecast method
    • Shafie-khah, M.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K. Price forecasting of day-ahead electricity markets using a hybrid forecast method. Energy Convers. Manag. 2011, 52, 2165-2169.
    • (2011) Energy Convers. Manag. , vol.52 , pp. 2165-2169
    • Shafie-khah, M.1    Moghaddam, M.P.2    Sheikh-El-Eslami, M.K.3
  • 12
    • 2942701936 scopus 로고    scopus 로고
    • Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets
    • Yamin, H.Y.; Shahidehpour, S.M.; Li, Z. Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets. Electr. Power Energy Syst. 2004, 26, 571-581.
    • (2004) Electr. Power Energy Syst. , vol.26 , pp. 571-581
    • Yamin, H.Y.1    Shahidehpour, S.M.2    Li, Z.3
  • 14
    • 84862177934 scopus 로고    scopus 로고
    • Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices
    • Keles, D.; Genoese, M.; Most, D.; Fichtner, W. Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices. Energy Econ. 2012, 34, 1012-1032.
    • (2012) Energy Econ , vol.34 , pp. 1012-1032
    • Keles, D.1    Genoese, M.2    Most, D.3    Fichtner, W.4
  • 15
    • 37849050263 scopus 로고    scopus 로고
    • Modelling spikes in electricity prices
    • Becker, R.; Hurn, S.; Pavlov, V. Modelling spikes in electricity prices. Econ. Rec. 2007, 83, 371-382.
    • (2007) Econ. Rec. , vol.83 , pp. 371-382
    • Becker, R.1    Hurn, S.2    Pavlov, V.3
  • 16
    • 9944255132 scopus 로고    scopus 로고
    • Electricity market price spike forecast with data mining techniques
    • Lu, X.; Dong, Z.Y.; Li, X. Electricity market price spike forecast with data mining techniques. Electr. Power Syst. Res. 2005, 73, 19-29.
    • (2005) Electr. Power Syst. Res. , vol.73 , pp. 19-29
    • Lu, X.1    Dong, Z.Y.2    Li, X.3
  • 17
    • 33947308438 scopus 로고    scopus 로고
    • A framework for electricity price spike analysis with advanced data mining methods
    • Zhao, J.H.; Dong, Z.Y.; Li, X.; Wong, K.P. A framework for electricity price spike analysis with advanced data mining methods. IEEE Trans. Power Syst. 2007, 22, 376-385.
    • (2007) IEEE Trans. Power Syst. , vol.22 , pp. 376-385
    • Zhao, J.H.1    Dong, Z.Y.2    Li, X.3    Wong, K.P.4
  • 18
    • 34250359493 scopus 로고    scopus 로고
    • Electricity market price spike forecasting and decision making
    • Zhao, J.H.; Dong, Z.Y.; Li, X. Electricity market price spike forecasting and decision making. IET Gener. Transm. Distrib. 2007, 1, 647-654.
    • (2007) IET Gener. Transm. Distrib. , vol.1 , pp. 647-654
    • Zhao, J.H.1    Dong, Z.Y.2    Li, X.3
  • 19
    • 75849142060 scopus 로고    scopus 로고
    • Electricity market price spike analysis by a hybrid data model and feature selection technique
    • Amjady, N.; Keynia, F. Electricity market price spike analysis by a hybrid data model and feature selection technique. Electr. Power Syst. Res. 2010, 80, 318-327.
    • (2010) Electr. Power Syst. Res. , vol.80 , pp. 318-327
    • Amjady, N.1    Keynia, F.2
  • 21
    • 34248589607 scopus 로고    scopus 로고
    • A stochastic programming approach to electric energy procurement for large consumers
    • Carrion, M.; Philpott, A.B.; Conejo, A.J.; Arroyo, J.M. A stochastic programming approach to electric energy procurement for large consumers. IEEE Trans. Power Syst. 2007, 22, 744-754.
    • (2007) IEEE Trans. Power Syst. , vol.22 , pp. 744-754
    • Carrion, M.1    Philpott, A.B.2    Conejo, A.J.3    Arroyo, J.M.4
  • 22
    • 80052266825 scopus 로고    scopus 로고
    • A new memetic algorithm approach for the price based unit commitment problem
    • Dimitroulas, D.K.; Georgilakis, P.S. A new memetic algorithm approach for the price based unit commitment problem. Appl. Energy 2011, 88, 4687-4699.
    • (2011) Appl. Energy , vol.88 , pp. 4687-4699
    • Dimitroulas, D.K.1    Georgilakis, P.S.2
  • 23
    • 55549089651 scopus 로고    scopus 로고
    • Non-linear models: Where do we go next-Time varying parameter models? Stud
    • doi:10.2202/1558-3708.1639
    • Granger, C.W.J. Non-linear models: Where do we go next-Time varying parameter models? Stud. Nonlinear Dyn. Econom. 2008, 12, doi:10.2202/1558-3708.1639.
    • (2008) Nonlinear Dyn. Econom. , vol.12
    • Granger, C.W.J.1
  • 26
    • 18944389569 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
    • Conejo, A.J.; Plazas, M.A.; Espinola, R.; Molina, A.B. Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Trans. Power Syst. 2005, 20, 1035-1042.
    • (2005) IEEE Trans. Power Syst. , vol.20 , pp. 1035-1042
    • Conejo, A.J.1    Plazas, M.A.2    Espinola, R.3    Molina, A.B.4
  • 27
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition-the wavelet representation
    • Mallat, S.G. A theory for multiresolution signal decomposition-the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674-693.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 28
    • 77955173218 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
    • Tan, Z.; Zhang, J.; Wang, J.; Xu, J. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Appl. Energy 2010, 87, 3606-3610.
    • (2010) Appl. Energy , vol.87 , pp. 3606-3610
    • Tan, Z.1    Zhang, J.2    Wang, J.3    Xu, J.4
  • 34
    • 69949086026 scopus 로고    scopus 로고
    • Comparisons of machine learning methods for electricity regional reference price forecasting
    • Meng, K.; Dong, Z.; Wang, H.; Wang, Y. Comparisons of machine learning methods for electricity regional reference price forecasting. Lect. Notes Comp. Sci. 2009, 5551, 827-835.
    • (2009) Lect. Notes Comp. Sci. , vol.5551 , pp. 827-835
    • Meng, K.1    Dong, Z.2    Wang, H.3    Wang, Y.4
  • 35
    • 84861865242 scopus 로고    scopus 로고
    • Data mining for electricity price classification and the application to demand-side management
    • Huang, D.; Zareipour, H.; Rosehart, W.D.; Amjady, N. Data mining for electricity price classification and the application to demand-side management. IEEE Trans. Smart Grid 2012, 3, 808-817.
    • (2012) IEEE Trans. Smart Grid , vol.3 , pp. 808-817
    • Huang, D.1    Zareipour, H.2    Rosehart, W.D.3    Amjady, N.4
  • 37
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 41
    • 0024123401 scopus 로고    scopus 로고
    • Probabilistic Neural Networks for Classification Mapping, or Associative Memory
    • San Diego, CA, USA, 24-27 July 1988
    • Specht, D.F. Probabilistic Neural Networks for Classification Mapping, or Associative Memory. In Proceedings of the IEEE International Conference on Neural Networks, San Diego, CA, USA, 24-27 July 1988; pp. 525-532.
    • Proceedings of the IEEE International Conference on Neural Networks, , pp. 525-532
    • Specht, D.F.1
  • 42
    • 34548052040 scopus 로고    scopus 로고
    • Electricity market price forecasting based on weighted nearest neighbors techniques
    • Lora, A.; Santos, J.; Exposito, A.; Ramos, J.; Santos, J. Electricity market price forecasting based on weighted nearest neighbors techniques. IEEE Trans. Power Syst. 2007, 22, 1294-1301.
    • (2007) IEEE Trans. Power Syst. , vol.22 , pp. 1294-1301
    • Lora, A.1    Santos, J.2    Exposito, A.3    Ramos, J.4    Santos, J.5
  • 43
    • 53149088171 scopus 로고    scopus 로고
    • Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method
    • Amjady, N.; Keynia, F. Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method. Int. J. Electr. Power Energy Syst. 2008, 30, 533-546.
    • (2008) Int. J. Electr. Power Energy Syst. , vol.30 , pp. 533-546
    • Amjady, N.1    Keynia, F.2
  • 45
    • 60149084412 scopus 로고    scopus 로고
    • Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm
    • Amjady, N.; Keynia, F. Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm. Trans. Power Syst. 2009, 24, 306-318.
    • (2009) Trans. Power Syst. , vol.24 , pp. 306-318
    • Amjady, N.1    Keynia, F.2
  • 47
    • 29744463867 scopus 로고    scopus 로고
    • Pricing in electricity markets: A mean reverting jump diffusion model with seasonality
    • Cartea, A.; Figueroa, M. Pricing in electricity markets: A mean reverting jump diffusion model with seasonality. Appl. Math. Financ. 2005, 12, 313-335.
    • (2005) Appl. Math. Financ. , vol.12 , pp. 313-335
    • Cartea, A.1    Figueroa, M.2
  • 48
    • 42749087480 scopus 로고    scopus 로고
    • Day-ahead price forecasting in restructured power systems using artificial neural networks
    • Vahidinasab, V.; Jadid, S.; Kazemi, A. Day-ahead price forecasting in restructured power systems using artificial neural networks. Electr. Power Syst. Res. 2008, 78, 1332-1342.
    • (2008) Electr. Power Syst. Res. , vol.78 , pp. 1332-1342
    • Vahidinasab, V.1    Jadid, S.2    Kazemi, A.3
  • 49
    • 65849470193 scopus 로고    scopus 로고
    • Mixed price and load forecasting of electricity markets by a new iterative prediction method
    • Amjady, N.; Daraeepour, A. Mixed price and load forecasting of electricity markets by a new iterative prediction method. Electr. Power Syst. Res. 2009, 79, 1329-1336.
    • (2009) Electr. Power Syst. Res. , vol.79 , pp. 1329-1336
    • Amjady, N.1    Daraeepour, A.2
  • 50
    • 31744444183 scopus 로고    scopus 로고
    • A comparison of univariate methods for forecasting electricity demand up to a day ahead
    • Taylor, J.W.; de Menezes, L.M.; McSharry, P.E. A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecast. 2006, 22, 1-16.
    • (2006) Int. J. Forecast. , vol.22 , pp. 1-16
    • Taylor, J.W.1    de Menezes, L.M.2    McSharry, P.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.