메뉴 건너뛰기




Volumn 124, Issue , 2014, Pages 158-167

Direct neural network modeling for separation of linear and branched paraffins by adsorption process for gasoline octane number improvement

Author keywords

Adsorption process; Artificial intelligence; Gasoline; Molecular sieves; Octane number

Indexed keywords


EID: 84894591878     PISSN: 00162361     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fuel.2014.01.080     Document Type: Article
Times cited : (29)

References (32)
  • 1
    • 34547681634 scopus 로고    scopus 로고
    • Multicomponent sorption of hexane isomers in zeolite BETA
    • P.S. Bárcia, J.A.C. Silva, and A.E. Rodrigues Multicomponent sorption of hexane isomers in zeolite BETA Am Instit Chem Eng 53 2007 1970 1981
    • (2007) Am Instit Chem Eng , vol.53 , pp. 1970-1981
    • Bárcia, P.S.1    Silva, J.A.C.2    Rodrigues, A.E.3
  • 2
    • 49649092221 scopus 로고    scopus 로고
    • Adsorption equilibrium and kinetics of branched octane isomers on a polyvinylidene chloride-based carbon molecular sieve
    • G.C. Laredo, E. Meneses, J. Castillo, J.O. Marroquín, and F.J. Jiménez-Cruz Adsorption equilibrium and kinetics of branched octane isomers on a polyvinylidene chloride-based carbon molecular sieve Energy Fuels 22 2008 2641 2648
    • (2008) Energy Fuels , vol.22 , pp. 2641-2648
    • Laredo, G.C.1    Meneses, E.2    Castillo, J.3    Marroquín, J.O.4    Jiménez-Cruz, F.J.5
  • 3
    • 84866459434 scopus 로고    scopus 로고
    • Dual-site Langmuir modeling of the liquid phase adsorption of linear and branched paraffins onto a PVDC carbon molecular sieve
    • G.C. Laredo, J. Castillo, and J.O. Marroquin Dual-site Langmuir modeling of the liquid phase adsorption of linear and branched paraffins onto a PVDC carbon molecular sieve Fuel 2012 404 413
    • (2012) Fuel , pp. 404-413
    • Laredo, G.C.1    Castillo, J.2    Marroquin, J.O.3
  • 4
    • 0032622265 scopus 로고    scopus 로고
    • Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes
    • Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, and A.G. Rinzler et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes Appl Phys 74 1999 2307
    • (1999) Appl Phys , vol.74 , pp. 2307
    • Ye, Y.1    Ahn, C.C.2    Witham, C.3    Fultz, B.4    Liu, J.5    Rinzler, A.G.6
  • 5
    • 0006012501 scopus 로고    scopus 로고
    • A complete basis set model chemistry. VII. Use of the minimum population localization method
    • J.A. Montgomery, M.J. Frisch, J.W. Ochterski, and G.A. Petersson A complete basis set model chemistry. VII. Use of the minimum population localization method J Chem Phys 112 2000 6532
    • (2000) J Chem Phys , vol.112 , pp. 6532
    • Montgomery, J.A.1    Frisch, M.J.2    Ochterski, J.W.3    Petersson, G.A.4
  • 6
    • 33645230356 scopus 로고    scopus 로고
    • Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials
    • Y. Kun, Z. Lizhong, and X. Baoshan Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials Environ Sci Technol 40 2006 1855 1861
    • (2006) Environ Sci Technol , vol.40 , pp. 1855-1861
    • Kun, Y.1    Lizhong, Z.2    Baoshan, X.3
  • 7
    • 72049131056 scopus 로고    scopus 로고
    • Insights into the modeling of adsorption isotherm systems
    • K.Y. Foo, and B.H. Hameed Insights into the modeling of adsorption isotherm systems Chem Eng J 156 2010 2 10
    • (2010) Chem Eng J , vol.156 , pp. 2-10
    • Foo, K.Y.1    Hameed, B.H.2
  • 8
    • 0343295986 scopus 로고
    • Developing empirical models from observational data using artificial neural networks
    • S. Yerramareddy, S.C.-Y. Lu, and K.F. Arnold Developing empirical models from observational data using artificial neural networks J Intell Manuf 4 1 1993 33 41
    • (1993) J Intell Manuf , vol.4 , Issue.1 , pp. 33-41
    • Yerramareddy, S.1    Lu, S.C.-Y.2    Arnold, K.F.3
  • 9
    • 84859214374 scopus 로고    scopus 로고
    • Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant
    • I. Monedero, F. Biscarri, C. León, J.I. Guerrero, R. González, and L.L. Pérez Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant Expert Syst Appl 39 10 2012 9860 9867
    • (2012) Expert Syst Appl , vol.39 , Issue.10 , pp. 9860-9867
    • Monedero, I.1    Biscarri, F.2    León, C.3    Guerrero, J.I.4    González, R.5    Pérez, L.L.6
  • 10
    • 0037433376 scopus 로고    scopus 로고
    • Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks
    • P. Doble, M. Sandercock, E.D. Pasquier, P. Petocz, C. Roux, and M. Dawson Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks Forensic Sci Int 132 1 2013 26 39
    • (2013) Forensic Sci Int , vol.132 , Issue.1 , pp. 26-39
    • Doble, P.1    Sandercock, M.2    Pasquier, E.D.3    Petocz, P.4    Roux, C.5    Dawson, M.6
  • 11
    • 33749266885 scopus 로고    scopus 로고
    • Performance and exhaust emissions of a gasoline engine using artificial neural network
    • C. Sayin, H.M. Ertunc, M. Hosoz, I. Kilicaslan, and M. Canakci Performance and exhaust emissions of a gasoline engine using artificial neural network Appl Therm Eng 27 1 2007 46 54
    • (2007) Appl Therm Eng , vol.27 , Issue.1 , pp. 46-54
    • Sayin, C.1    Ertunc, H.M.2    Hosoz, M.3    Kilicaslan, I.4    Canakci, M.5
  • 12
    • 70349470950 scopus 로고    scopus 로고
    • Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks
    • N.T. Kara, and S. Baysec Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks Appl Energy 87 1 2010 349 355
    • (2010) Appl Energy , vol.87 , Issue.1 , pp. 349-355
    • Kara, N.T.1    Baysec, S.2
  • 13
    • 0035864990 scopus 로고    scopus 로고
    • Determination of octane numbers of gasoline compounds from their chemical structure by C NMR spectroscopy and neural networks
    • R. Meusinger, and R. Moros Determination of octane numbers of gasoline compounds from their chemical structure by C NMR spectroscopy and neural networks Fuel 80 5 2001 613 621
    • (2001) Fuel , vol.80 , Issue.5 , pp. 613-621
    • Meusinger, R.1    Moros, R.2
  • 18
    • 17344362298 scopus 로고
    • Studies on pore systems in catalysts: V.The t method
    • B.C. Lippens, and J.H. de Boer Studies on pore systems in catalysts: V. The t method J Catal 4 1965 319 323
    • (1965) J Catal , vol.4 , pp. 319-323
    • Lippens, B.C.1    De Boer, J.H.2
  • 19
    • 0001447182 scopus 로고
    • The analysis of surface and pores of activated carbons by the adsorption of various gases
    • K. Nakai, J. Sonoda, S. Kondo, and I. Abe The analysis of surface and pores of activated carbons by the adsorption of various gases Pure Appl Chem 65 1993 2181 2187
    • (1993) Pure Appl Chem , vol.65 , pp. 2181-2187
    • Nakai, K.1    Sonoda, J.2    Kondo, S.3    Abe, I.4
  • 20
    • 0020881065 scopus 로고
    • Method for the calculation of the effective pore size distribution in molecular sieve carbon
    • G. Hovarth, and K. Kawazoe Method for the calculation of the effective pore size distribution in molecular sieve carbon J Chem Eng Jpn 16 1983 470 475
    • (1983) J Chem Eng Jpn , vol.16 , pp. 470-475
    • Hovarth, G.1    Kawazoe, K.2
  • 22
    • 84886671536 scopus 로고    scopus 로고
    • Octane enhancement by the selective separation of branched and linear paraffins in naphthas using a PVDC-PVC carbon molecular sieve
    • Part A
    • G.C. Laredo, J.L. Cano, J. Castillo, J.A. Hernández, and J.O. Marroquín Octane enhancement by the selective separation of branched and linear paraffins in naphthas using a PVDC-PVC carbon molecular sieve Fuel 117 2013 660 666 Part A
    • (2013) Fuel , vol.117 , pp. 660-666
    • Laredo, G.C.1    Cano, J.L.2    Castillo, J.3    Hernández, J.A.4    Marroquín, J.O.5
  • 23
    • 0004063090 scopus 로고    scopus 로고
    • 2nd ed. Prentice Hall Upper Saddle River, NJ
    • S. Haykin Neural networks 2nd ed. 1999 Prentice Hall Upper Saddle River, NJ
    • (1999) Neural Networks
    • Haykin, S.1
  • 25
    • 77955921953 scopus 로고    scopus 로고
    • Estimation of static formation temperatures in geothermal wells by using an artificial neural network approach
    • A. Bassam, E. Santoyo, J. Andaverde, J.A. Hernandez, and O.M. Espinoza-Ojeda Estimation of static formation temperatures in geothermal wells by using an artificial neural network approach Comput Geosci 36 2010 1191 1199
    • (2010) Comput Geosci , vol.36 , pp. 1191-1199
    • Bassam, A.1    Santoyo, E.2    Andaverde, J.3    Hernandez, J.A.4    Espinoza-Ojeda, O.M.5
  • 26
    • 79960181155 scopus 로고    scopus 로고
    • Optimal performance of COD removal during aqueous treatment of alazine and gesaprim commercial herbicides by direct and inverse neural network
    • Y. Hamzaoui, J.A. Hernández, S. Silva-Martínez, A. Bassam, A. Álvarez, and C. Lizama-Bahena Optimal performance of COD removal during aqueous treatment of alazine and gesaprim commercial herbicides by direct and inverse neural network Desalination 277 2011 325 337
    • (2011) Desalination , vol.277 , pp. 325-337
    • Hamzaoui, Y.1    Hernández, J.A.2    Silva-Martínez, S.3    Bassam, A.4    Álvarez, A.5    Lizama-Bahena, C.6
  • 27
    • 84868103595 scopus 로고    scopus 로고
    • Optimal performance assessment for a photo-Fenton degradation pilot plant driven by solar energy using artificial neural networks
    • A. Bassam, I. Salgado-Tránsito, I. Oller, E. Santoyo, E.A. Jiménez, and J.A. Hernandez et al. Optimal performance assessment for a photo-Fenton degradation pilot plant driven by solar energy using artificial neural networks Int J Energy Res 36 2012 1314 1324
    • (2012) Int J Energy Res , vol.36 , pp. 1314-1324
    • Bassam, A.1    Salgado-Tránsito, I.2    Oller, I.3    Santoyo, E.4    Jiménez, E.A.5    Hernandez, J.A.6
  • 28
    • 84869886132 scopus 로고    scopus 로고
    • Artificial neural networks for the generation of geothermal maps of ground temperature at various depths by considering land configuration
    • S.A. Kalogirou, G.A Florides, P.D Pouloupatis, I. Panayides, J. Joseph-Stylianou, and Z. Zomeni Artificial neural networks for the generation of geothermal maps of ground temperature at various depths by considering land configuration Energy 48 1 2012 233 240
    • (2012) Energy , vol.48 , Issue.1 , pp. 233-240
    • Kalogirou, S.A.1    Florides, G.A.2    Pouloupatis, P.D.3    Panayides, I.4    Joseph-Stylianou, J.5    Zomeni, Z.6
  • 29
    • 56249127479 scopus 로고    scopus 로고
    • Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural network inverse
    • J.A. Hernandez, A. Bassam, J. Siqueiros, and D. Juarez-Romero Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural network inverse Renewable Energy 34 2009 1084 1091
    • (2009) Renewable Energy , vol.34 , pp. 1084-1091
    • Hernandez, J.A.1    Bassam, A.2    Siqueiros, J.3    Juarez-Romero, D.4
  • 31
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • G.D. Garson Interpreting neural-network connection weights Artif Int Expert 6 7 1991 47 51
    • (1991) Artif Int Expert , vol.6 , Issue.7 , pp. 47-51
    • Garson, G.D.1
  • 32
    • 84885434783 scopus 로고    scopus 로고
    • Search for optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using artificial neural network inverse solved by genetic and particle swarm algorithms
    • Article(3)
    • Y. El Hamzaoui, A. Bassam, J.A. Hernandez, O. Cortez Aburto, and O. Oubram Search for optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using artificial neural network inverse solved by genetic and particle swarm algorithms Chem Prod Process Model 7 1 2012 Article(3)
    • (2012) Chem Prod Process Model , vol.7 , Issue.1
    • El Hamzaoui, Y.1    Bassam, A.2    Hernandez, J.A.3    Cortez Aburto, O.4    Oubram, O.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.