메뉴 건너뛰기




Volumn , Issue , 2013, Pages 495-498

MiRNA and gene expression based cancer classification using self-learning and co-training approaches

Author keywords

Cancer sample classifiers; Co Training; miRNA and gene expression analysis; Self Learning; Semi supervised Approaches

Indexed keywords


EID: 84894520755     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2013.6732544     Document Type: Conference Paper
Times cited : (15)

References (25)
  • 2
    • 33144490646 scopus 로고    scopus 로고
    • A microRNA expression signature of human solid tumors defines cancer gene targets
    • S. Volinia, G. Calin and C. Liu. A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings Natl. Acad. Sci. USA, 103:2257-2261, 2006.
    • (2006) Proceedings Natl. Acad. Sci. USA , vol.103 , pp. 2257-2261
    • Volinia, S.1    Calin, G.2    Liu, C.3
  • 3
    • 78650184234 scopus 로고    scopus 로고
    • Exploring features and classifiers to classify MicroRNA expression profiles of human cancer
    • K. Kim and S. Cho. Exploring Features and Classifiers to Classify MicroRNA Expression Profiles of Human Cancer. International Conference on Neural Information Processing (ICONIP), 2(10):234-241, 2010.
    • (2010) International Conference on Neural Information Processing (ICONIP) , vol.2 , Issue.10 , pp. 234-241
    • Kim, K.1    Cho, S.2
  • 4
    • 84888285381 scopus 로고    scopus 로고
    • Classifier fusion for poorlydifferentiated tumor classification using both messenger RNA and microRNA expression profiles
    • Stanford, California
    • Y. Wang and M. H. Dunham. Classifier fusion for poorlydifferentiated tumor classification using both messenger RNA and microRNA expression profiles. In Proceedings of the 2006 Computational Systems Bioinformatics Conference (CSB 2006), Stanford, California, 2006.
    • (2006) Proceedings of the 2006 Computational Systems Bioinformatics Conference (CSB 2006)
    • Wang, Y.1    Dunham, M.H.2
  • 5
    • 42249091838 scopus 로고    scopus 로고
    • Cancer classifcation with MicroRNA expression patterns found by an information theory approach
    • Y. Zheng and C. Keong Kwoh. Cancer Classifcation with MicroRNA Expression Patterns Found By An Information Theory Approach. Journal of Computers (JCP), 1(5):30-39, 2006.
    • (2006) Journal of Computers (JCP) , vol.1 , Issue.5 , pp. 30-39
    • Zheng, Y.1    Keong Kwoh, C.2
  • 7
    • 38049134913 scopus 로고    scopus 로고
    • Random forest for gene expression based cancer classification: Overlooked issues
    • O. Okun and H. Priisalu. Random Forest for Gene Expression Based Cancer Classification: Overlooked Issues. Pattern Recognition and Image Analysis Volume 4478, pp. 483-490, 2007.
    • (2007) Pattern Recognition and Image Analysis , vol.4478 , pp. 483-490
    • Okun, O.1    Priisalu, H.2
  • 9
    • 79952449647 scopus 로고    scopus 로고
    • MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer
    • H. Chen, B. Yang, J. Liu and D. Liu. MicroRNA Signatures Predict Oestrogen Receptor, Progesterone Receptor and HER2/neu Receptor Status in Breast Cancer. Expert Syst. Appl. 38:9014-22, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 9014-9022
    • Chen, H.1    Yang, B.2    Liu, J.3    Liu, D.4
  • 10
    • 84880442512 scopus 로고    scopus 로고
    • Support vector machine classifier for estrogen receptor positive and negative early-onset breast cancer
    • R. Upstill-Goddard, D. Eccles, S. Ennis, S. Rafiq, W. Tapper, J. Fliege and A. Collins. Support Vector Machine Classifier for Estrogen Receptor Positive and Negative Early-Onset Breast Cancer. PLoS ONE 8(7): e68606, 2013.
    • (2013) PLoS ONE , vol.8 , Issue.7
    • Upstill-Goddard, R.1    Eccles, D.2    Ennis, S.3    Rafiq, S.4    Tapper, W.5    Fliege, J.6    Collins, A.7
  • 12
    • 85069911126 scopus 로고    scopus 로고
    • Co-training and self-training for word sence disambiguation
    • Boston, MA, USA
    • R. Mihalcea. Co-training and Self-training for Word Sence Disambiguation. In Proceedings of CoNLL, pp. 33-40, Boston, MA, USA, 2004.
    • (2004) Proceedings of CoNLL , pp. 33-40
    • Mihalcea, R.1
  • 13
    • 25144481906 scopus 로고    scopus 로고
    • Semi-supervised protein classification using cluster kernels
    • J. Weston. Semi-supervised protein classification using cluster kernels. Bioinformatics, 21, 3241-3247, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 3241-3247
    • Weston, J.1
  • 14
    • 41849115550 scopus 로고    scopus 로고
    • Semi-supervised method for predicting transcription factorgene interactions in Escherichia coli
    • J. Ernst. Semi-supervised method for predicting transcription factorgene interactions in Escherichia coli. Pols Comput. Biol., 4(3), e1000044, 2008.
    • (2008) Pols Comput. Biol. , vol.4 , Issue.3
    • Ernst, J.1
  • 15
    • 80054895643 scopus 로고    scopus 로고
    • Semi-supervised learning improves gene expression-based prediction of cancer recurrence
    • M. Shi and B. Zhang. Semi-supervised learning improves gene expression-based prediction of cancer recurrence. Bioinformatics, 27(21):3017-3023, 2011.
    • (2011) Bioinformatics , vol.27 , Issue.21 , pp. 3017-3023
    • Shi, M.1    Zhang, B.2
  • 22
    • 0035478854 scopus 로고    scopus 로고
    • Random foresets
    • L. Breiman. Random Foresets. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 23
    • 84894522806 scopus 로고    scopus 로고
    • http://www.cs.waikato.ac.nz/ml/weka
  • 24
    • 84894540780 scopus 로고    scopus 로고
    • http://olivier.chapelle.cc/lds
  • 25
    • 84894549425 scopus 로고    scopus 로고
    • http://www.ncbi.nlm.nih.gov/geo


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.