-
1
-
-
84864666197
-
Identification of pathogenesis-related microRNAs in hepatocellular carcinoma by expression profiling
-
October
-
Y. Katayama, M. Maeda, K. Miyaguchi, S. Nemoto, M. Yasen, S. Tanaka, H. Mizushima, Y. Fukuoka, S. Arii and H. Tanaka. Identification of pathogenesis-related microRNAs in hepatocellular carcinoma by expression profiling. Oncol. Lett. 4(4): 817-823. October 2012.
-
(2012)
Oncol. Lett.
, vol.4
, Issue.4
, pp. 817-823
-
-
Katayama, Y.1
Maeda, M.2
Miyaguchi, K.3
Nemoto, S.4
Yasen, M.5
Tanaka, S.6
Mizushima, H.7
Fukuoka, Y.8
Arii, S.9
Tanaka, H.10
-
2
-
-
33144490646
-
A microRNA expression signature of human solid tumors defines cancer gene targets
-
S. Volinia, G. Calin and C. Liu. A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings Natl. Acad. Sci. USA, 103:2257-2261, 2006.
-
(2006)
Proceedings Natl. Acad. Sci. USA
, vol.103
, pp. 2257-2261
-
-
Volinia, S.1
Calin, G.2
Liu, C.3
-
3
-
-
78650184234
-
Exploring features and classifiers to classify MicroRNA expression profiles of human cancer
-
K. Kim and S. Cho. Exploring Features and Classifiers to Classify MicroRNA Expression Profiles of Human Cancer. International Conference on Neural Information Processing (ICONIP), 2(10):234-241, 2010.
-
(2010)
International Conference on Neural Information Processing (ICONIP)
, vol.2
, Issue.10
, pp. 234-241
-
-
Kim, K.1
Cho, S.2
-
4
-
-
84888285381
-
Classifier fusion for poorlydifferentiated tumor classification using both messenger RNA and microRNA expression profiles
-
Stanford, California
-
Y. Wang and M. H. Dunham. Classifier fusion for poorlydifferentiated tumor classification using both messenger RNA and microRNA expression profiles. In Proceedings of the 2006 Computational Systems Bioinformatics Conference (CSB 2006), Stanford, California, 2006.
-
(2006)
Proceedings of the 2006 Computational Systems Bioinformatics Conference (CSB 2006)
-
-
Wang, Y.1
Dunham, M.H.2
-
5
-
-
42249091838
-
Cancer classifcation with MicroRNA expression patterns found by an information theory approach
-
Y. Zheng and C. Keong Kwoh. Cancer Classifcation with MicroRNA Expression Patterns Found By An Information Theory Approach. Journal of Computers (JCP), 1(5):30-39, 2006.
-
(2006)
Journal of Computers (JCP)
, vol.1
, Issue.5
, pp. 30-39
-
-
Zheng, Y.1
Keong Kwoh, C.2
-
6
-
-
84858973320
-
Gene co-adaboost: A semi-supervised approach for classifying gene expression data
-
USA
-
N. Du, K. Li, S. D. Mahajan, S. A. Schwartz, B. B. Nair, C. Bin Hsiao, A. Zhang. Gene Co-Adaboost: a semi-supervised approach for classifying gene expression data. Proceedings of the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine (BCB), pp. 531-535, USA, 2011.
-
(2011)
Proceedings of the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine (BCB)
, pp. 531-535
-
-
Du, N.1
Li, K.2
Mahajan, S.D.3
Schwartz, S.A.4
Nair, B.B.5
Bin Hsiao, C.6
Zhang, A.7
-
7
-
-
38049134913
-
Random forest for gene expression based cancer classification: Overlooked issues
-
O. Okun and H. Priisalu. Random Forest for Gene Expression Based Cancer Classification: Overlooked Issues. Pattern Recognition and Image Analysis Volume 4478, pp. 483-490, 2007.
-
(2007)
Pattern Recognition and Image Analysis
, vol.4478
, pp. 483-490
-
-
Okun, O.1
Priisalu, H.2
-
8
-
-
84883444193
-
Investigation of random forest performance with cancer microarray data
-
CATA 2008, April 9-11, Cancun, Mexico, ISCA, 2008
-
M. Klassen, M. Cummings and G. Saldana. Investigation of random forest performance with cancer microarray data. In proceedings of the ISCA 23rd International Conference on Computers and Their Applications, CATA 2008, April 9-11, 2008, Cancun, Mexico, pp. 64-69, ISCA, 2008.
-
(2008)
Proceedings of the ISCA 23rd International Conference on Computers and Their Applications
, pp. 64-69
-
-
Klassen, M.1
Cummings, M.2
Saldana, G.3
-
9
-
-
79952449647
-
MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer
-
H. Chen, B. Yang, J. Liu and D. Liu. MicroRNA Signatures Predict Oestrogen Receptor, Progesterone Receptor and HER2/neu Receptor Status in Breast Cancer. Expert Syst. Appl. 38:9014-22, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 9014-9022
-
-
Chen, H.1
Yang, B.2
Liu, J.3
Liu, D.4
-
10
-
-
84880442512
-
Support vector machine classifier for estrogen receptor positive and negative early-onset breast cancer
-
R. Upstill-Goddard, D. Eccles, S. Ennis, S. Rafiq, W. Tapper, J. Fliege and A. Collins. Support Vector Machine Classifier for Estrogen Receptor Positive and Negative Early-Onset Breast Cancer. PLoS ONE 8(7): e68606, 2013.
-
(2013)
PLoS ONE
, vol.8
, Issue.7
-
-
Upstill-Goddard, R.1
Eccles, D.2
Ennis, S.3
Rafiq, S.4
Tapper, W.5
Fliege, J.6
Collins, A.7
-
11
-
-
35348895580
-
Semi-supervised self-training of object detection models
-
Breckenridge, CO, USA
-
C. Rosenberg, M. Hebert and H. Schneiderman. Semi-Supervised Self-Training of Object Detection Models. 7th IEEE Workshop on Applications of Computer Vision/IEEE Workshop on Motion and Video Computing (WACV/MOTION), pp. 29-36, Breckenridge, CO, USA, 2005.
-
(2005)
7th IEEE Workshop on Applications of Computer Vision/IEEE Workshop on Motion and Video Computing (WACV/MOTION)
, pp. 29-36
-
-
Rosenberg, C.1
Hebert, M.2
Schneiderman, H.3
-
12
-
-
85069911126
-
Co-training and self-training for word sence disambiguation
-
Boston, MA, USA
-
R. Mihalcea. Co-training and Self-training for Word Sence Disambiguation. In Proceedings of CoNLL, pp. 33-40, Boston, MA, USA, 2004.
-
(2004)
Proceedings of CoNLL
, pp. 33-40
-
-
Mihalcea, R.1
-
13
-
-
25144481906
-
Semi-supervised protein classification using cluster kernels
-
J. Weston. Semi-supervised protein classification using cluster kernels. Bioinformatics, 21, 3241-3247, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 3241-3247
-
-
Weston, J.1
-
14
-
-
41849115550
-
Semi-supervised method for predicting transcription factorgene interactions in Escherichia coli
-
J. Ernst. Semi-supervised method for predicting transcription factorgene interactions in Escherichia coli. Pols Comput. Biol., 4(3), e1000044, 2008.
-
(2008)
Pols Comput. Biol.
, vol.4
, Issue.3
-
-
Ernst, J.1
-
15
-
-
80054895643
-
Semi-supervised learning improves gene expression-based prediction of cancer recurrence
-
M. Shi and B. Zhang. Semi-supervised learning improves gene expression-based prediction of cancer recurrence. Bioinformatics, 27(21):3017-3023, 2011.
-
(2011)
Bioinformatics
, vol.27
, Issue.21
, pp. 3017-3023
-
-
Shi, M.1
Zhang, B.2
-
21
-
-
84864413475
-
MiRanda application: Human MicroRNA targets
-
Jul;3
-
B. John, AJ. Enright, A. Aravin, T. Tuschl, C. Sander and D. Marks. miRanda application: Human MicroRNA targets. PLoS Biol. Jul;3(7):e264, 2005.
-
(2005)
PLoS Biol.
, Issue.7
-
-
John, B.1
Enright, A.J.2
Aravin, A.3
Tuschl, T.4
Sander, C.5
Marks, D.6
-
22
-
-
0035478854
-
Random foresets
-
L. Breiman. Random Foresets. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
23
-
-
84894522806
-
-
http://www.cs.waikato.ac.nz/ml/weka
-
-
-
-
24
-
-
84894540780
-
-
http://olivier.chapelle.cc/lds
-
-
-
-
25
-
-
84894549425
-
-
http://www.ncbi.nlm.nih.gov/geo
-
-
-
|