-
1
-
-
0001032458
-
-
1 0556-2805 10.1103/PhysRevB.14.2239
-
D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976). 0556-2805 10.1103/PhysRevB.14.2239
-
(1976)
Phys. Rev. B
, vol.14
, pp. 2239
-
-
Hofstadter, D.R.1
-
2
-
-
17044452210
-
Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance
-
DOI 10.1103/PhysRevLett.86.147
-
C. Albrecht, J. H. Smet, K. von Klitzing, D. Weiss, V. Umansky, and H. Schweizer, Phys. Rev. Lett. 86, 147 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.86.147 (Pubitemid 32131754)
-
(2001)
Physical Review Letters
, vol.86
, Issue.1
, pp. 147-150
-
-
Albrecht, C.1
Smet, J.H.2
Von Klitzing, K.3
Weiss, D.4
Umansky, V.5
Schweizer, H.6
-
3
-
-
84878398531
-
-
3 NATUAS 0028-0836 10.1038/nature12186
-
C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, Nature (London) 497, 598 (2013). NATUAS 0028-0836 10.1038/nature12186
-
(2013)
Nature (London)
, vol.497
, pp. 598
-
-
Dean, C.R.1
Wang, L.2
Maher, P.3
Forsythe, C.4
Ghahari, F.5
Gao, Y.6
Katoch, J.7
Ishigami, M.8
Moon, P.9
Koshino, M.10
Taniguchi, T.11
Watanabe, K.12
Shepard, K.L.13
Hone, J.14
Kim, P.15
-
4
-
-
84879269174
-
-
4 SCIEAS 0036-8075 10.1126/science.1237240
-
B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, Science 340, 1427 (2013). SCIEAS 0036-8075 10.1126/science.1237240
-
(2013)
Science
, vol.340
, pp. 1427
-
-
Hunt, B.1
Sanchez-Yamagishi, J.D.2
Young, A.F.3
Yankowitz, M.4
Leroy, B.J.5
Watanabe, K.6
Taniguchi, T.7
Moon, P.8
Koshino, M.9
Jarillo-Herrero, P.10
Ashoori, R.C.11
-
5
-
-
84878391708
-
-
5 NATUAS 0028-0836 10.1038/nature12187
-
L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal'ko, and A. K. Geim, Nature (London) 497, 594 (2013). NATUAS 0028-0836 10.1038/nature12187
-
(2013)
Nature (London)
, vol.497
, pp. 594
-
-
Ponomarenko, L.A.1
Gorbachev, R.V.2
Yu, G.L.3
Elias, D.C.4
Jalil, R.5
Patel, A.A.6
Mishchenko, A.7
Mayorov, A.S.8
Woods, C.R.9
Wallbank, J.R.10
Mucha-Kruczynski, M.11
Piot, B.A.12
Potemski, M.13
Grigorieva, I.V.14
Novoselov, K.S.15
Guinea, F.16
Fal'Ko, V.I.17
Geim, A.K.18
-
6
-
-
3442880129
-
-
6 PRLTAO 0031-9007 10.1103/PhysRevLett.49.405
-
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982). PRLTAO 0031-9007 10.1103/PhysRevLett.49.405
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 405
-
-
Thouless, D.J.1
Kohmoto, M.2
Nightingale, M.P.3
Den Nijs, M.4
-
7
-
-
0035540646
-
-
7 JMAPAQ 0022-2488 10.1063/1.1412464
-
D. Osadchy and J. E. Avron, J. Math. Phys. 42, 5665 (2001). JMAPAQ 0022-2488 10.1063/1.1412464
-
(2001)
J. Math. Phys.
, vol.42
, pp. 5665
-
-
Osadchy, D.1
Avron, J.E.2
-
8
-
-
19744382564
-
-
8 (R). PLRAAN 1050-2947 10.1103/PhysRevA.70.041603
-
E. J. Mueller, Phys. Rev. A 70, 041603 (R) (2004). PLRAAN 1050-2947 10.1103/PhysRevA.70.041603
-
(2004)
Phys. Rev. A
, vol.70
, pp. 041603
-
-
Mueller, E.J.1
-
9
-
-
40849094864
-
Trapped fermi gases in rotating optical lattices: Realization and detection of the topological hofstadter insulator
-
DOI 10.1103/PhysRevLett.100.070402
-
R. O. UmucalIlar, H. Zhai, and M. Ö. Oktel, Phys. Rev. Lett. 100, 070402 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.070402 (Pubitemid 351393606)
-
(2008)
Physical Review Letters
, vol.100
, Issue.7
, pp. 070402
-
-
Umucalilar, R.O.1
Zhai, H.2
Oktel, M.O.3
-
10
-
-
77951193499
-
-
10 NJOPFM 1367-2630 10.1088/1367-2630/12/3/033007
-
F. Gerbier and J. Dalibard, New J. Phys. 12, 033007 (2010). NJOPFM 1367-2630 10.1088/1367-2630/12/3/033007
-
(2010)
New J. Phys.
, vol.12
, pp. 033007
-
-
Gerbier, F.1
Dalibard, J.2
-
11
-
-
79952592854
-
-
11 EULEEJ 0295-5075 10.1209/0295-5075/93/20003
-
A. R. Kolovsky, Europhys. Lett. 93, 20003 (2011). EULEEJ 0295-5075 10.1209/0295-5075/93/20003
-
(2011)
Europhys. Lett.
, vol.93
, pp. 20003
-
-
Kolovsky, A.R.1
-
12
-
-
84874906184
-
-
12 EULEEJ 0295-5075 10.1209/0295-5075/101/40001
-
C. E. Creffield and F. Sols, EPL 101, 40001 (2013). EULEEJ 0295-5075 10.1209/0295-5075/101/40001
-
(2013)
EPL
, vol.101
, pp. 40001
-
-
Creffield, C.E.1
Sols, F.2
-
13
-
-
83655202720
-
-
13 PRLTAO 0031-9007 10.1103/PhysRevLett.107.255301
-
M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Phys. Rev. Lett. 107, 255301 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.255301
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 255301
-
-
Aidelsburger, M.1
Atala, M.2
Nascimbène, S.3
Trotzky, S.4
Chen, Y.-A.5
Bloch, I.6
-
14
-
-
84876747418
-
-
14 10.1007/s00340-013-5418-1
-
M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Appl. Phys. B 113, 1 (2013). 10.1007/s00340-013-5418-1
-
(2013)
Appl. Phys. B
, vol.113
, pp. 1
-
-
Aidelsburger, M.1
Atala, M.2
Nascimbène, S.3
Trotzky, S.4
Chen, Y.-A.5
Bloch, I.6
-
15
-
-
3042690839
-
-
15 NJOPFM 1367-2630 10.1088/1367-2630/5/1/356
-
D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003). NJOPFM 1367-2630 10.1088/1367-2630/5/1/356
-
(2003)
New J. Phys.
, vol.5
, pp. 56
-
-
Jaksch, D.1
Zoller, P.2
-
16
-
-
84886777920
-
-
16 PRLTAO 0031-9007 10.1103/PhysRevLett.111.185301
-
M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.185301
-
(2013)
Phys. Rev. Lett.
, vol.111
, pp. 185301
-
-
Aidelsburger, M.1
Atala, M.2
Lohse, M.3
Barreiro, J.T.4
Paredes, B.5
Bloch, I.6
-
17
-
-
84886802902
-
-
17 PRLTAO 0031-9007 10.1103/PhysRevLett.111.185302
-
H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.185302
-
(2013)
Phys. Rev. Lett.
, vol.111
, pp. 185302
-
-
Miyake, H.1
Siviloglou, G.A.2
Kennedy, C.J.3
Burton, W.C.4
Ketterle, W.5
-
18
-
-
82455201158
-
-
18 PRLTAO 0031-9007 10.1103/PhysRevLett.107.235301
-
E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and J. J. Garcia-Ripoll, Phys. Rev. Lett. 107, 235301 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.235301
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 235301
-
-
Alba, E.1
Fernandez-Gonzalvo, X.2
Mur-Petit, J.3
Pachos, J.K.4
Garcia-Ripoll, J.J.5
-
19
-
-
84876830063
-
-
19 PNASA6 0027-8424 10.1073/pnas.1300170110
-
N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, and I. B. Spielman, Proc. Nat. Acad. Sci. USA 110, 6736 (2013). PNASA6 0027-8424 10.1073/pnas.1300170110
-
(2013)
Proc. Nat. Acad. Sci. USA
, vol.110
, pp. 6736
-
-
Goldman, N.1
Dalibard, J.2
Dauphin, A.3
Gerbier, F.4
Lewenstein, M.5
Zoller, P.6
Spielman, I.B.7
-
20
-
-
84876226074
-
-
20 PRLTAO 0031-9007 10.1103/PhysRevLett.110.165304
-
D. A. Abanin, T. Kitagawa, I. Bloch, and E. Demler, Phys. Rev. Lett. 110, 165304 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.165304
-
(2013)
Phys. Rev. Lett.
, vol.110
, pp. 165304
-
-
Abanin, D.A.1
Kitagawa, T.2
Bloch, I.3
Demler, E.4
-
21
-
-
84876703021
-
-
21 PRLTAO 0031-9007 10.1103/PhysRevLett.110.166802
-
L. Wang, A. A. Soluyanov, and M. Troyer, Phys. Rev. Lett. 110, 166802 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.166802
-
(2013)
Phys. Rev. Lett.
, vol.110
, pp. 166802
-
-
Wang, L.1
Soluyanov, A.A.2
Troyer, M.3
-
22
-
-
84884698999
-
-
22 PRLTAO 0031-9007 10.1103/PhysRevLett.111.120402
-
X.-J. Liu, K. T. Law, T. K. Ng, and P. A. Lee, Phys. Rev. Lett. 111, 120402 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.120402
-
(2013)
Phys. Rev. Lett.
, vol.111
, pp. 120402
-
-
Liu, X.-J.1
Law, K.T.2
Ng, T.K.3
Lee, P.A.4
-
23
-
-
0030140624
-
Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data
-
DOI 10.1016/0370-1573(95)00074-7
-
M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996). PRPLCM 0370-1573 10.1016/0370-1573(95)00074-7 (Pubitemid 126175303)
-
(1996)
Physics Report
, vol.269
, Issue.3
, pp. 133-195
-
-
Jarrell, M.1
Gubernatis, J.E.2
-
24
-
-
0000463250
-
-
24 PRLTAO 0031-9007 10.1103/PhysRevLett.63.907
-
Y. Hasegawa, P. Lederer, T. M. Rice, and P. B. Wiegmann, Phys. Rev. Lett. 63, 907 (1989). PRLTAO 0031-9007 10.1103/PhysRevLett.63.907
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 907
-
-
Hasegawa, Y.1
Lederer, P.2
Rice, T.M.3
Wiegmann, P.B.4
-
25
-
-
58149234843
-
-
25 (R). PRBMDO 1098-0121 10.1103/PhysRevB.78.241102
-
W. H. Xu, L. P. Yang, M. P. Qin, and T. Xiang, Phys. Rev. B 78, 241102 (R) (2008). PRBMDO 1098-0121 10.1103/PhysRevB.78.241102
-
(2008)
Phys. Rev. B
, vol.78
, pp. 241102
-
-
Xu, W.H.1
Yang, L.P.2
Qin, M.P.3
Xiang, T.4
-
26
-
-
84859898585
-
-
26 JUPSAU 0031-9015 10.1143/JPSJ.81.044605
-
L.-P. Yang, W.-H. Xu, M.-P. Qin, and T. Xiang, J. Phys. Soc. Jpn. 81, 044605 (2012). JUPSAU 0031-9015 10.1143/JPSJ.81.044605
-
(2012)
J. Phys. Soc. Jpn.
, vol.81
, pp. 044605
-
-
Yang, L.-P.1
Xu, W.-H.2
Qin, M.-P.3
Xiang, T.4
-
27
-
-
84894456894
-
-
27 Other thermodynamic quantities like entropy and specific heat also reveal the DOS in the zero-temperature limit; however, unlike the compressibility, they are not directly accessible in the cold atom toolbox
-
Other thermodynamic quantities like entropy and specific heat also reveal the DOS in the zero-temperature limit; however, unlike the compressibility, they are not directly accessible in the cold atom toolbox.
-
-
-
-
28
-
-
84894432565
-
-
28 We need the local chemical potential in the trap to scan through the energy band, i.e., the density in the trap center to reach one. However, one can utilize the particle-hole symmetry of the Hofstadter lattice and only probe ρ < 0.5 to restore the whole spectrum
-
We need the local chemical potential in the trap to scan through the energy band, i.e., the density in the trap center to reach one. However, one can utilize the particle-hole symmetry of the Hofstadter lattice and only probe ρ < 0.5 to restore the whole spectrum.
-
-
-
-
29
-
-
69149087060
-
-
29 NATUAS 0028-0836 10.1038/nature08244
-
N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, Nature (London) 460, 995 (2009). NATUAS 0028-0836 10.1038/nature08244
-
(2009)
Nature (London)
, vol.460
, pp. 995
-
-
Gemelke, N.1
Zhang, X.2
Hung, C.-L.3
Chin, C.4
-
30
-
-
84860429363
-
-
30 1745-2473 10.1038/nphys2273
-
K. Van Houcke, F. Werner, E. Kozik, N. Prokof'ev, B. Svistunov, M. J. H. Ku, A. T. Sommer, L. W. Cheuk, A. Schirotzek, and M. W. Zwierlein, Nat. Phys. 8, 366 (2012). 1745-2473 10.1038/nphys2273
-
(2012)
Nat. Phys.
, vol.8
, pp. 366
-
-
Van Houcke, K.1
Werner, F.2
Kozik, E.3
Prokof'Ev, N.4
Svistunov, B.5
Ku, M.J.H.6
Sommer, A.T.7
Cheuk, L.W.8
Schirotzek, A.9
Zwierlein, M.W.10
-
31
-
-
84856629356
-
-
31 SCIEAS 0036-8075 10.1126/science.1214987
-
M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Science 335, 563 (2012). SCIEAS 0036-8075 10.1126/science.1214987
-
(2012)
Science
, vol.335
, pp. 563
-
-
Ku, M.J.H.1
Sommer, A.T.2
Cheuk, L.W.3
Zwierlein, M.W.4
-
32
-
-
84862984775
-
-
32 PLRAAN 1050-2947 10.1103/PhysRevA.85.063615
-
Y.-R. Lee, M.-S. Heo, J.-H. Choi, T. T. Wang, C. A. Christensen, T. M. Rvachov, and W. Ketterle, Phys. Rev. A 85, 063615 (2012). PLRAAN 1050-2947 10.1103/PhysRevA.85.063615
-
(2012)
Phys. Rev. A
, vol.85
, pp. 063615
-
-
Lee, Y.-R.1
Heo, M.-S.2
Choi, J.-H.3
Wang, T.T.4
Christensen, C.A.5
Rvachov, T.M.6
Ketterle, W.7
-
33
-
-
84894449685
-
-
33 μ 0 and α will vary in different experimental runs. One can nevertheless utilize the particle-hole symmetry of the Hofstadter model and chose the origin of chemical potential at ρ = 0.5 for each measurement
-
μ 0 and α will vary in different experimental runs. One can nevertheless utilize the particle-hole symmetry of the Hofstadter model and chose the origin of chemical potential at ρ = 0.5 for each measurement.
-
-
-
-
34
-
-
79955019154
-
-
34 RPPHAG 0034-4885 10.1088/0034-4885/74/5/054401
-
D. C. McKay and B. DeMarco, Rep. Prog. Phys. 74, 054401 (2011). RPPHAG 0034-4885 10.1088/0034-4885/74/5/054401
-
(2011)
Rep. Prog. Phys.
, vol.74
, pp. 054401
-
-
McKay, D.C.1
Demarco, B.2
-
35
-
-
78751485073
-
-
35 PRLTAO 0031-9007 10.1103/PhysRevLett.106.030401
-
S. Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, T. Pruschke, and M. Troyer, Phys. Rev. Lett. 106, 030401 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.030401
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 030401
-
-
Fuchs, S.1
Gull, E.2
Pollet, L.3
Burovski, E.4
Kozik, E.5
Pruschke, T.6
Troyer, M.7
-
36
-
-
0542427831
-
-
36 PRBMDO 0163-1829 10.1103/PhysRevB.57.10287
-
A. W. Sandvik, Phys. Rev. B 57, 10287 (1998). PRBMDO 0163-1829 10.1103/PhysRevB.57.10287
-
(1998)
Phys. Rev. B
, vol.57
, pp. 10287
-
-
Sandvik, A.W.1
-
37
-
-
0034261269
-
Diagrammatic quantum Monte Carlo study of the Frohlich polaron
-
DOI 10.1103/PhysRevB.62.6317
-
A. S. Mishchenko, N. V. Prokof'ev, A. Sakamoto, and B. V. Svistunov, Phys. Rev. B 62, 6317 (2000). PRBMDO 0163-1829 10.1103/PhysRevB.62.6317 (Pubitemid 32336014)
-
(2000)
Physical Review B - Condensed Matter and Materials Physics
, vol.62
, Issue.10
, pp. 6317-6336
-
-
Mishchenko, A.S.1
Prokof'Ev, N.V.2
Sakamoto, A.3
Svistunov, B.V.4
-
38
-
-
84894427240
-
-
38, arXiv:cond-mat/0403055
-
K. S. D. Beach, arXiv:cond-mat/0403055.
-
-
-
Beach, K.S.D.1
-
39
-
-
77952018823
-
-
39 PLEEE8 1539-3755 10.1103/PhysRevE.81.056701
-
S. Fuchs, T. Pruschke, and M. Jarrell, Phys. Rev. E 81, 056701 (2010). PLEEE8 1539-3755 10.1103/PhysRevE.81.056701
-
(2010)
Phys. Rev. e
, vol.81
, pp. 056701
-
-
Fuchs, S.1
Pruschke, T.2
Jarrell, M.3
-
42
-
-
2942672895
-
-
42 PRLTAO 0031-9007 10.1103/PhysRevLett.92.186401
-
J. Shi, S.-J. Tang, B. Wu, P. T. Sprunger, W. L. Yang, V. Brouet, X. J. Zhou, Z. Hussain, Z.-X. Shen, Z. Zhang, and E. W. Plummer, Phys. Rev. Lett. 92, 186401 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.92.186401
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 186401
-
-
Shi, J.1
Tang, S.-J.2
Wu, B.3
Sprunger, P.T.4
Yang, W.L.5
Brouet, V.6
Zhou, X.J.7
Hussain, Z.8
Shen, Z.-X.9
Zhang, Z.10
Plummer, E.W.11
-
43
-
-
84894471880
-
-
for details of the maximum entropy method and the stochastic inference approach
-
See Supplemental Material http://link.aps.org/supplemental/10.1103/ PhysRevA.89.011603 for details of the maximum entropy method and the stochastic inference approach.
-
-
-
-
44
-
-
79960640935
-
-
44 PRLTAO 0031-9007 10.1103/PhysRevLett.106.225301
-
Q. Zhou and T.-L. Ho, Phys. Rev. Lett. 106, 225301 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.225301
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 225301
-
-
Zhou, Q.1
Ho, T.-L.2
-
45
-
-
77954829532
-
-
45 PRLTAO 0031-9007 10.1103/PhysRevLett.105.040402
-
C. Sanner, E. J. Su, A. Keshet, R. Gommers, Y.-i. Shin, W. Huang, and W. Ketterle, Phys. Rev. Lett. 105, 040402 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.105.040402
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 040402
-
-
Sanner, C.1
Su, E.J.2
Keshet, A.3
Gommers, R.4
Shin, Y.-I.5
Huang, W.6
Ketterle, W.7
-
46
-
-
77954833567
-
-
46 PRLTAO 0031-9007 10.1103/PhysRevLett.105.040401
-
T. Müller, B. Zimmermann, J. Meineke, J.-P. Brantut, T. Esslinger, and H. Moritz, Phys. Rev. Lett. 105, 040401 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.105.040401
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 040401
-
-
Müller, T.1
Zimmermann, B.2
Meineke, J.3
Brantut, J.-P.4
Esslinger, T.5
Moritz, H.6
-
47
-
-
76449096688
-
-
47 1745-2473 10.1038/nphys1477
-
T.-L. Ho and Q. Zhou, Nat. Phys. 6, 131 (2009). 1745-2473 10.1038/nphys1477
-
(2009)
Nat. Phys.
, vol.6
, pp. 131
-
-
Ho, T.-L.1
Zhou, Q.2
-
48
-
-
77957375994
-
-
48 PLRAAN 1050-2947 10.1103/PhysRevA.82.033627
-
P. N. Ma, L. Pollet, and M. Troyer, Phys. Rev. A 82, 033627 (2010). PLRAAN 1050-2947 10.1103/PhysRevA.82.033627
-
(2010)
Phys. Rev. A
, vol.82
, pp. 033627
-
-
Ma, P.N.1
Pollet, L.2
Troyer, M.3
-
49
-
-
84894503504
-
-
49 The LDA correction to the density profile is less than 0.1 % [44] at the typical experimental temperatures (T / J ∼ 1). We have also performed the deconvolution using the LDA density profiles. The images are only slightly different from the one using the exact density data, indicating the the LDA corrections to the final results are indeed small. These corrections will further decrease if one uses a weaker trapping potential experimentally
-
The LDA correction to the density profile is less than 0.1 % [44] at the typical experimental temperatures (T / J ∼ 1). We have also performed the deconvolution using the LDA density profiles. The images are only slightly different from the one using the exact density data, indicating the the LDA corrections to the final results are indeed small. These corrections will further decrease if one uses a weaker trapping potential experimentally.
-
-
-
-
50
-
-
84858187821
-
-
50 NATUAS 0028-0836 10.1038/nature10871
-
L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature (London) 483, 302 (2012). NATUAS 0028-0836 10.1038/nature10871
-
(2012)
Nature (London)
, vol.483
, pp. 302
-
-
Tarruell, L.1
Greif, D.2
Uehlinger, T.3
Jotzu, G.4
Esslinger, T.5
-
51
-
-
84856132902
-
-
51 PRLTAO 0031-9007 10.1103/PhysRevLett.108.045305
-
G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Phys. Rev. Lett. 108, 045305 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.045305
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 045305
-
-
Jo, G.-B.1
Guzman, J.2
Thomas, C.K.3
Hosur, P.4
Vishwanath, A.5
Stamper-Kurn, D.M.6
|