메뉴 건너뛰기




Volumn 264, Issue , 2014, Pages 196-210

Pessimistic rough set based decisions: A multigranulation fusion strategy

Author keywords

Attribute reduction; Granular computing; Multigranulation; Pessimistic rough set based decision; Rough set

Indexed keywords


EID: 84894439092     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2013.12.014     Document Type: Article
Times cited : (176)

References (45)
  • 1
    • 84963133436 scopus 로고
    • Rough fuzzy sets and fuzzy rough sets
    • D. Dubois, and H. Prade Rough fuzzy sets and fuzzy rough sets Int. J. Gen. Syst. 17 1990 191 209
    • (1990) Int. J. Gen. Syst. , vol.17 , pp. 191-209
    • Dubois, D.1    Prade, H.2
  • 2
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • I. Düntsch, and G. Gediga Uncertainty measures of rough set prediction Artif. Intell. 106 1998 109 137
    • (1998) Artif. Intell. , vol.106 , pp. 109-137
    • Düntsch, I.1    Gediga, G.2
  • 3
    • 80955137747 scopus 로고    scopus 로고
    • Dominance-based fuzzy rough set analysis of uncertain and possibilistic data tables
    • T.F. Fan, C.J. Liau, and D.R. Liu Dominance-based fuzzy rough set analysis of uncertain and possibilistic data tables Int. J. Approx. Reason. 52 9 2011 1283 1297
    • (2011) Int. J. Approx. Reason. , vol.52 , Issue.9 , pp. 1283-1297
    • Fan, T.F.1    Liau, C.J.2    Liu, D.R.3
  • 4
    • 81155150333 scopus 로고    scopus 로고
    • The reduction and fusion of fuzzy covering systems based on the evidence theory
    • T. Feng, S.P. Zhang, and J.S. Mi The reduction and fusion of fuzzy covering systems based on the evidence theory Int. J. Approx. Reason. 53 1 2012 87 103
    • (2012) Int. J. Approx. Reason. , vol.53 , Issue.1 , pp. 87-103
    • Feng, T.1    Zhang, S.P.2    Mi, J.S.3
  • 5
    • 0035501187 scopus 로고    scopus 로고
    • Rough approximation quality revisited
    • G. Gediga, and I. Düntsch Rough approximation quality revisited Artif. Intell. 132 2001 219 234
    • (2001) Artif. Intell. , vol.132 , pp. 219-234
    • Gediga, G.1    Düntsch, I.2
  • 6
    • 0032180332 scopus 로고    scopus 로고
    • Rough computational methods for information systems
    • J.W. Guan, and D.A. Bell Rough computational methods for information systems Artif. Intell. 105 1998 77 103
    • (1998) Artif. Intell. , vol.105 , pp. 77-103
    • Guan, J.W.1    Bell, D.A.2
  • 7
    • 79957592434 scopus 로고    scopus 로고
    • Game-theoretic rough sets
    • J.P. Herbert, and J.T. Yao Game-theoretic rough sets Fundam. Inform. 108 3-4 2011 267 286
    • (2011) Fundam. Inform. , vol.108 , Issue.34 , pp. 267-286
    • Herbert, J.P.1    Yao, J.T.2
  • 10
    • 33947421283 scopus 로고    scopus 로고
    • Fuzzy-rough sets assisted attribute selection
    • R. Jensen, and Q. Shen Fuzzy-rough sets assisted attribute selection IEEE Trans. Fuzzy Syst. 15 1 2007 73 89
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.1 , pp. 73-89
    • Jensen, R.1    Shen, Q.2
  • 11
    • 33846938349 scopus 로고    scopus 로고
    • Rough sets attributes reduction based expert system in interlaced video sequences
    • G. Jeon, D. Kim, and J. Jeong Rough sets attributes reduction based expert system in interlaced video sequences IEEE Trans. Consum. Electr. 52 4 2006 1348 1355
    • (2006) IEEE Trans. Consum. Electr. , vol.52 , Issue.4 , pp. 1348-1355
    • Jeon, G.1    Kim, D.2    Jeong, J.3
  • 12
    • 0032294902 scopus 로고    scopus 로고
    • Rough set approach to incomplete information systems
    • M. Kryszkiewicz Rough set approach to incomplete information systems Inform. Sci. 112 1998 39 49
    • (1998) Inform. Sci. , vol.112 , pp. 39-49
    • Kryszkiewicz, M.1
  • 13
    • 0033079944 scopus 로고    scopus 로고
    • Rules in incomplete information systems
    • M. Kryszkiewicz Rules in incomplete information systems Inform. Sci. 113 1999 271 292
    • (1999) Inform. Sci. , vol.113 , pp. 271-292
    • Kryszkiewicz, M.1
  • 14
    • 0037809690 scopus 로고    scopus 로고
    • Maximal consistent block technique for rule acquisition in incomplete information systems
    • Y. Leung, and D.Y. Li Maximal consistent block technique for rule acquisition in incomplete information systems Inform. Sci. 153 2003 85 106
    • (2003) Inform. Sci. , vol.153 , pp. 85-106
    • Leung, Y.1    Li, D.Y.2
  • 15
    • 81155139533 scopus 로고    scopus 로고
    • An interval set model for learning rules from incomplete information table
    • H.X. Li, M.H. Wang, X.Z. Zhou, and j.B. Zhao An interval set model for learning rules from incomplete information table Int. J. Approx. Reason. 53 1 2012 24 37
    • (2012) Int. J. Approx. Reason. , vol.53 , Issue.1 , pp. 24-37
    • Li, H.X.1    Wang, M.H.2    Zhou, X.Z.3    Zhao, J.B.4
  • 16
    • 1842674114 scopus 로고    scopus 로고
    • A new method for measuring uncertainty and fuzziness in rough set theory
    • J.Y. Liang, C.Y. Dang, K.S. Chin, and C.M. Yam Richard A new method for measuring uncertainty and fuzziness in rough set theory Int. J. Gen. Syst. 31 4 2002 331 342
    • (2002) Int. J. Gen. Syst. , vol.31 , Issue.4 , pp. 331-342
    • Liang, J.Y.1    Dang, C.Y.2    Chin, K.S.3    Yam Richard, C.M.4
  • 18
    • 51849091385 scopus 로고    scopus 로고
    • Information granules and entropy theory in information systems
    • J.Y. Liang, and Y.H. Qian Information granules and entropy theory in information systems Sci. China-Ser. F: Inform. Sci. 51 10 2008 1427 1444
    • (2008) Sci. China-Ser. F: Inform. Sci. , vol.51 , Issue.10 , pp. 1427-1444
    • Liang, J.Y.1    Qian, Y.H.2
  • 19
    • 84870251102 scopus 로고    scopus 로고
    • Using one axiom to characterize rough set and fuzzy rough set approximations
    • G.L. Liu Using one axiom to characterize rough set and fuzzy rough set approximations Inform. Sci. 223 2013 285 296
    • (2013) Inform. Sci. , vol.223 , pp. 285-296
    • Liu, G.L.1
  • 20
    • 38049059155 scopus 로고
    • Rough sets: Theoretical aspects of reasoning about data, system theory
    • Kluwer Dordrecht
    • Z. Pawlak Rough sets: theoretical aspects of reasoning about data, system theory Knowledge Engineering and Problem Solving vol. 9 1991 Kluwer Dordrecht
    • (1991) Knowledge Engineering and Problem Solving , vol.9 VOL.
    • Pawlak, Z.1
  • 21
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • Z. Pawlak, and A. Skowron Rudiments of rough sets Inform. Sci. 177 2007 3 27
    • (2007) Inform. Sci. , vol.177 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 23
    • 84888063545 scopus 로고    scopus 로고
    • Multigranulation decision-theoretic rough sets
    • http://dx.doi.org/10.1016/j.ijar.2013.03.004
    • Y.H. Qian, H. Zhang, Y.L. Sang, and J.Y. Liang Multigranulation decision-theoretic rough sets Int. J. Approx. Reasoa. 2013 http://dx.doi.org/10. 1016/j.ijar.2013.03.004
    • (2013) Int. J. Approx. Reasoa.
    • Qian, Y.H.1    Zhang, H.2    Sang, Y.L.3    Liang, J.Y.4
  • 26
    • 77955227234 scopus 로고    scopus 로고
    • Approximation reduction in inconsistent incomplete decision tables
    • Y.H. Qian, J.Y. Liang, D.Y. Li, F. Wang, and N.N. Ma Approximation reduction in inconsistent incomplete decision tables Knowl.-Based Syst. 23 2010 427 433
    • (2010) Knowl.-Based Syst. , vol.23 , pp. 427-433
    • Qian, Y.H.1    Liang, J.Y.2    Li, D.Y.3    Wang, F.4    Ma, N.N.5
  • 27
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: An accelerator for attribute reduction in rough set theory
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang Positive approximation: an accelerator for attribute reduction in rough set theory Artif. Intell. 174 2010 597 618
    • (2010) Artif. Intell. , vol.174 , pp. 597-618
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 30
    • 33646108613 scopus 로고    scopus 로고
    • Rough intervals-enhancing intervals f or qualitative modeling of technical systems
    • M. Rebolledo Rough intervals-enhancing intervals f or qualitative modeling of technical systems Artif. Intell. 170 2006 667 685
    • (2006) Artif. Intell. , vol.170 , pp. 667-685
    • Rebolledo, M.1
  • 31
    • 0036833247 scopus 로고    scopus 로고
    • A rough-fuzzy approach for generating classification rules
    • Q. Shen, and A. Chouchoulas A rough-fuzzy approach for generating classification rules Pattern Recogn. 35 2002 2425 2438
    • (2002) Pattern Recogn. , Issue.35 , pp. 2425-2438
    • Shen, Q.1    Chouchoulas, A.2
  • 32
    • 19044375446 scopus 로고    scopus 로고
    • The investigation of the Bayesian rough set model
    • D. Ślezak, and W. Ziarko The investigation of the Bayesian rough set model Int. J. Approx. Reason. 40 2005 81 91
    • (2005) Int. J. Approx. Reason. , vol.40 , pp. 81-91
    • Ślezak, D.1    Ziarko, W.2
  • 33
    • 84875435236 scopus 로고    scopus 로고
    • Can fuzzy entropies be effective measures for evaluating the roughness of a rough set?
    • W. Wei, J.Y. Liang, Y.H. Qian, and C.Y. Dang Can fuzzy entropies be effective measures for evaluating the roughness of a rough set? Inform. Sci. 232 2013 143 166
    • (2013) Inform. Sci. , vol.232 , pp. 143-166
    • Wei, W.1    Liang, J.Y.2    Qian, Y.H.3    Dang, C.Y.4
  • 34
    • 0036530141 scopus 로고    scopus 로고
    • Inclusion degree: A perspective on measures for rough set data analysis
    • Z.B. Xu, J.Y. Liang, C.Y. Dang, and K.S. Chin Inclusion degree: a perspective on measures for rough set data analysis Inform. Sci. 141 2002 227 236
    • (2002) Inform. Sci. , vol.141 , pp. 227-236
    • Xu, Z.B.1    Liang, J.Y.2    Dang, C.Y.3    Chin, K.S.4
  • 36
    • 52949092454 scopus 로고    scopus 로고
    • Probabilistic rough sets: Approximations, decision-makings, and applications
    • J.T. Yao, J.T. Yao, Y.Y. Yao, and W. Ziarko Probabilistic rough sets: approximations, decision-makings, and applications Int. J. Approx. Reason. 49 2008 253 254
    • (2008) Int. J. Approx. Reason. , vol.49 , pp. 253-254
    • Yao, J.T.1    Yao, J.T.2    Yao, Y.Y.3    Ziarko, W.4
  • 37
    • 79251593234 scopus 로고    scopus 로고
    • The superiority of three-way decisions in probabilistic rough set models
    • Y.Y. Yao The superiority of three-way decisions in probabilistic rough set models Inform. Sci. 181 2011 1080 1096
    • (2011) Inform. Sci. , vol.181 , pp. 1080-1096
    • Yao, Y.Y.1
  • 38
    • 0035155557 scopus 로고    scopus 로고
    • Information granulation and rough set approximation
    • Y.Y. Yao Information granulation and rough set approximation Int. J. Intell. Syst. 16 2001 87 104
    • (2001) Int. J. Intell. Syst. , vol.16 , pp. 87-104
    • Yao, Y.Y.1
  • 39
    • 70449130467 scopus 로고    scopus 로고
    • Three-way decisions with probabilistic rough sets
    • Y.Y. Yao Three-way decisions with probabilistic rough sets Inform. Sci. 180 2010 341 353
    • (2010) Inform. Sci. , vol.180 , pp. 341-353
    • Yao, Y.Y.1
  • 40
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • L.A. Zadeh Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic Fuzzy Sets Syst. 90 1997 111 127
    • (1997) Fuzzy Sets Syst. , vol.90 , pp. 111-127
    • Zadeh, L.A.1
  • 41
    • 33645689182 scopus 로고    scopus 로고
    • Knowledge acquisition based on rough set theory and principal component analysis
    • A. Zeng, D. Pan, Q.L. Zheng, and H. Peng Knowledge acquisition based on rough set theory and principal component analysis IEEE Intell. Syst. 2006 78 85
    • (2006) IEEE Intell. Syst. , pp. 78-85
    • Zeng, A.1    Pan, D.2    Zheng, Q.L.3    Peng, H.4
  • 42
    • 81155131259 scopus 로고    scopus 로고
    • Comparative study of variable precision rough set model and graded rough set model
    • X.Y. Zhang, Z.W. Mo, F. Xiong, and W. Cheng Comparative study of variable precision rough set model and graded rough set model Int. J. Approx. Reason. 53 1 2012 104 116
    • (2012) Int. J. Approx. Reason. , vol.53 , Issue.1 , pp. 104-116
    • Zhang, X.Y.1    Mo, Z.W.2    Xiong, F.3    Cheng, W.4
  • 43
    • 84871359715 scopus 로고    scopus 로고
    • Relationships between covering-based rough sets and relation-based rough sets
    • Y.L. Zhang, and M.K. Luo Relationships between covering-based rough sets and relation-based rough sets Inform. Sci. 225 2013 55 71
    • (2013) Inform. Sci. , vol.225 , pp. 55-71
    • Zhang, Y.L.1    Luo, M.K.2
  • 45
    • 0027543613 scopus 로고
    • Variable precision rough sets model
    • W. Ziarko Variable precision rough sets model J. Comput. Syst. Sci. 46 1 1993 39 59
    • (1993) J. Comput. Syst. Sci. , vol.46 , Issue.1 , pp. 39-59
    • Ziarko, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.