메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1764-1771

Learning context sensitive behavior models from observations for predicting traffic situations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84894346767     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITSC.2013.6728484     Document Type: Conference Paper
Times cited : (61)

References (24)
  • 2
    • 7444258015 scopus 로고    scopus 로고
    • Action recognition and prediction for driver assistance systems using dynamic belief networks
    • I. Dagli, M. Brost, and G. Breuel, "Action recognition and prediction for driver assistance systems using dynamic belief networks," Lecture Notes in Computer Science, pp. 179-194, 2003.
    • (2003) Lecture Notes in Computer Science , pp. 179-194
    • Dagli, I.1    Brost, M.2    Breuel, G.3
  • 4
    • 78650451958 scopus 로고    scopus 로고
    • A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments
    • Madeira, Portugal
    • T. Gindele, S. Brechtel, and R. Dillmann, "A Probabilistic Model for Estimating Driver Behaviors and Vehicle Trajectories in Traffic Environments," in IEEE International Conference on Intelligent Transportation Systems, Madeira, Portugal, 2010, pp. 1625-1631.
    • (2010) IEEE International Conference on Intelligent Transportation Systems , pp. 1625-1631
    • Gindele, T.1    Brechtel, S.2    Dillmann, R.3
  • 5
    • 84864939189 scopus 로고    scopus 로고
    • Estimation of multivehicle dynamics by considering contextual information
    • G. Agamennoni, J. I. Nieto, and E. M. Nebot, "Estimation of Multivehicle Dynamics by Considering Contextual Information," IEEE Transactions on Robotics, vol. 28, no. 4, pp. 855-870, 2012.
    • (2012) IEEE Transactions on Robotics , vol.28 , Issue.4 , pp. 855-870
    • Agamennoni, G.1    Nieto, J.I.2    Nebot, E.M.3
  • 6
    • 84864987885 scopus 로고    scopus 로고
    • Incorporating environmental knowledge into bayesian filtering using attractor functions
    • A. Alin, M. V. Butz, and J. Fritsch, "Incorporating environmental knowledge into bayesian filtering using attractor functions," in IEEE Intelligent Vehicles Symposium. IEEE, 2012, pp. 476-481.
    • (2012) IEEE Intelligent Vehicles Symposium. IEEE , pp. 476-481
    • Alin, A.1    Butz, M.V.2    Fritsch, J.3
  • 10
    • 79960776101 scopus 로고    scopus 로고
    • Situation analysis and adaptive risk assessment for intersection safety systems in advanced assisted driving
    • J. Zhang and B. Rössler, "Situation Analysis and Adaptive Risk Assessment for Intersection Safety Systems in Advanced Assisted Driving," in Proceedings of the 21th Fachgespräch Autonome Mobile Systeme, 2009, pp. 249-258.
    • (2009) Proceedings of the 21th Fachgespräch Autonome Mobile Systeme , pp. 249-258
    • Zhang, J.1    Rössler, B.2
  • 14
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 23
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • R. Neal and G. Hinton, "A view of the em algorithm that justifies incremental, sparse, and other variants," Learning in graphical models, vol. 89, pp. 355-368, 1998.
    • (1998) Learning in Graphical Models , vol.89 , pp. 355-368
    • Neal, R.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.