메뉴 건너뛰기




Volumn 47, Issue 6, 2014, Pages 2165-2177

Covariance-guided One-Class Support Vector Machine

Author keywords

Covariance; One class classification; Outlier detection; Support Vector Machine

Indexed keywords


EID: 84894304676     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.01.004     Document Type: Article
Times cited : (42)

References (50)
  • 3
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D. Tax, and R. Duin Support vector data description Mach. Learn. 54 2004 45 66
    • (2004) Mach. Learn. , vol.54 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 5
    • 80053477407 scopus 로고    scopus 로고
    • Tumor detection in MR images using one-class immune feature weighted SVMs
    • L. Guo Tumor detection in MR images using one-class immune feature weighted SVMs IEEE Trans. Magn. 16 2011 3849 3852
    • (2011) IEEE Trans. Magn. , vol.16 , pp. 3849-3852
    • Guo, L.1
  • 6
    • 84861734707 scopus 로고    scopus 로고
    • Clustering based one-class classification for compliance verification of the comprehensive nuclear-test-ban treaty
    • IEEE Press
    • S. Sharma, C. Bellinger, N. Japkowicz, Clustering based one-class classification for compliance verification of the comprehensive nuclear-test-ban treaty, in: Canadian Conference on Artificial Intelligence, IEEE Press, 2012, pp. 181-193.
    • (2012) Canadian Conference on Artificial Intelligence , pp. 181-193
    • Sharma, S.1    Bellinger, C.2    Japkowicz, N.3
  • 7
    • 0742268826 scopus 로고    scopus 로고
    • PEBL web page classification without negative examples
    • Y. Hwanjo PEBL web page classification without negative examples IEEE Trans. Knowl. Data Eng. 16 2004 70 81
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , pp. 70-81
    • Hwanjo, Y.1
  • 9
    • 0037753593 scopus 로고    scopus 로고
    • (Ph.D. thesis), Delft University of Technology, Delft, The Netherlands, 2001
    • D. Tax, One-class classification (Ph.D. thesis), Delft University of Technology, Delft, The Netherlands, 2001.
    • One-class Classification
    • Tax, D.1
  • 10
    • 0001138328 scopus 로고
    • A K-means clustering algorithm
    • J.A. Hartigan, and M.A. Wong A K-means clustering algorithm Appl. Stat. 28 1979 100 108
    • (1979) Appl. Stat. , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 15
    • 0000184052 scopus 로고    scopus 로고
    • Statistical independence and novelty detection with information preserving nonlinear maps
    • L. Parra, G. Deco, and S. Miesbach Statistical independence and novelty detection with information preserving nonlinear maps Neural Comput. 8 1996 260 269
    • (1996) Neural Comput. , vol.8 , pp. 260-269
    • Parra, L.1    Deco, G.2    Miesbach, S.3
  • 18
    • 0001412271 scopus 로고
    • Pattern separation by convex programming
    • J. Rosen Pattern separation by convex programming J. Math. Anal. Appl. 10 1965 123 134
    • (1965) J. Math. Anal. Appl. , vol.10 , pp. 123-134
    • Rosen, J.1
  • 21
    • 77949509297 scopus 로고    scopus 로고
    • Maximum relative margin and data-dependent regularization
    • P. Shivaswamy, and T. Jebara Maximum relative margin and data-dependent regularization J. Mach. Learn. Res. 11 2010 747 788
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 747-788
    • Shivaswamy, P.1    Jebara, T.2
  • 23
  • 24
    • 77952544212 scopus 로고    scopus 로고
    • Discriminant analysis via support vectors
    • S. Gu, Y. Tan, and X. He Discriminant analysis via support vectors Neurocomputing 73 2010 1669 1675
    • (2010) Neurocomputing , vol.73 , pp. 1669-1675
    • Gu, S.1    Tan, Y.2    He, X.3
  • 25
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization a geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani Manifold regularization a geometric framework for learning from labeled and unlabeled examples J. Mach. Learn. Res. 7 2006 2399 2434
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 26
    • 84878111771 scopus 로고    scopus 로고
    • New one-versus-all v-svm solving intra-inter class imbalance with extended manifold regularization and localized relative maximum margin
    • X. Wang, and Y. Niu New one-versus-all v-svm solving intra-inter class imbalance with extended manifold regularization and localized relative maximum margin Neurocomputing 115 2010 106 121
    • (2010) Neurocomputing , vol.115 , pp. 106-121
    • Wang, X.1    Niu, Y.2
  • 31
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen On estimation of a probability density function and mode Ann. Math. Stat. 33 1962 1065 1076
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 35
    • 34250122797 scopus 로고
    • Interpolation of scattered data distance matrices and conditionally positive definite functions
    • C. Michelli Interpolation of scattered data distance matrices and conditionally positive definite functions Constr. Approx. 2 1986 11 22
    • (1986) Constr. Approx. , vol.2 , pp. 11-22
    • Michelli, C.1
  • 38
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A. Asuncion, D. Newman, UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.2
  • 39
    • 83755173085 scopus 로고    scopus 로고
    • A novel one-class classification method based on feature analysis and prototype reduction
    • IEEE Press
    • G. Cabral, A.I. de Oliveira, A novel one-class classification method based on feature analysis and prototype reduction, in: IEEE International Conference on System, Man and Cybernetics, IEEE Press, 2011, pp. 983-988.
    • (2011) IEEE International Conference on System, Man and Cybernetics , pp. 983-988
    • Cabral, G.1    De Oliveira, A.I.2
  • 40
    • 0345438685 scopus 로고    scopus 로고
    • ROC Graphs: Notes and Practical Considerations for Data Mining Researchers
    • HP Laboratories
    • T. Fawcett, ROC Graphs: Notes and Practical Considerations for Data Mining Researchers, Technical Report HPL-2003-4, HP Laboratories, 2003.
    • (2003) Technical Report HPL-2003-4
    • Fawcett, T.1
  • 41
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • J. Hanley, and B. McNeil A method of comparing the areas under receiver operating characteristic curves derived from the same cases Radiology 148 1983 839 843
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.1    McNeil, B.2
  • 42
    • 0017017305 scopus 로고
    • On the choice of the smoothing parameters for Parzen estimators of probability density functions
    • R. Duin On the choice of the smoothing parameters for Parzen estimators of probability density functions IEEE Trans. Comput. C-25 1976 1175 1179
    • (1976) IEEE Trans. Comput. , vol.25 C- , pp. 1175-1179
    • Duin, R.1
  • 43
    • 84894298294 scopus 로고    scopus 로고
    • DDtools, the data description toolbox for Matlab
    • D. Tax, DDtools, the data description toolbox for Matlab, 2012, Version 1.9.1.
    • (2012) Version 1.9.1
    • Tax, D.1
  • 45
    • 35048842249 scopus 로고    scopus 로고
    • Editing training data for k-NN classifiers with neural network ensemble
    • IEEE Press
    • Y. Jiang, Z.-H. Zhou, Editing training data for k-NN classifiers with neural network ensemble, in: International Symposium on Neural Networks, IEEE Press, 2004, pp. 356-361.
    • (2004) International Symposium on Neural Networks , pp. 356-361
    • Jiang, Y.1    Zhou, Z.-H.2
  • 46
    • 77954438466 scopus 로고    scopus 로고
    • Improvement of the Parzen classifier in small training sample size situations
    • Y. Muto, and Y. Hamamoto Improvement of the Parzen classifier in small training sample size situations Intell. Data Anal. 5 2001 477 490
    • (2001) Intell. Data Anal. , vol.5 , pp. 477-490
    • Muto, Y.1    Hamamoto, Y.2
  • 48
    • 79951751439 scopus 로고    scopus 로고
    • NESVM: A fast gradient method for support vector machines
    • IEEE Press
    • T. Zhou, D. Tao, X. Wu, NESVM: a fast gradient method for support vector machines, in: International Conference on Data Mining, IEEE Press, 2010, pp. 679-688.
    • (2010) International Conference on Data Mining , pp. 679-688
    • Zhou, T.1    Tao, D.2    Wu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.