메뉴 건너뛰기




Volumn 18, Issue , 2014, Pages 223-231

Estimating of the dry unit weight of compacted soils using general linear model and multi-layer perceptron neural networks

Author keywords

Dry unit weight; Earth fill; General linear model; Multi layer perceptron neural networks; Relative compaction; Standard Proctor test

Indexed keywords


EID: 84894275778     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.01.033     Document Type: Article
Times cited : (27)

References (23)
  • 2
    • 0000871814 scopus 로고
    • Fundamental principles of soil compaction
    • R.R. Proctor Fundamental principles of soil compaction Eng. News Rec. 111 9 1933 245 248
    • (1933) Eng. News Rec. , vol.111 , Issue.9 , pp. 245-248
    • Proctor, R.R.1
  • 7
    • 0027845608 scopus 로고
    • Estimation of soil compaction parameters by means of Atterberg limits
    • A.N. Al- Khafaji Estimation of soil compaction parameters by means of Atterberg limits Q. J. Eng. Geol. Hydroge. 26 1993 359 368 (Pubitemid 24423518)
    • (1993) Quarterly Journal of Engineering Geology , vol.26 , Issue.4 , pp. 359-368
    • Al-Khafaji, A.N.1
  • 8
    • 0029480555 scopus 로고
    • Hydraulic conductivity of thirteen compacted clays
    • C.H. Benson, and J.M. Trast Hydraulic conductivity of thirteen compacted clays Clays Clay Miner. 43 6 1995 669 681 (Pubitemid 26476243)
    • (1995) Clays & Clay Minerals , vol.43 , Issue.6 , pp. 669-681
    • Benson, C.H.1    Trast, J.M.2
  • 10
    • 13844250634 scopus 로고    scopus 로고
    • Plastic limit and compaction characteristics of fine-grained soils
    • DOI 10.1680/grim.9.1.17.58544, GI 3173
    • A. Sridharan, and H.B. Nagaraj Plastic limit and compaction characteristics of fine-grained soils Ground Improv. 9 1 2005 17 22 (Pubitemid 40252311)
    • (2005) Ground Improvement , vol.9 , Issue.1 , pp. 17-22
    • Sridharan, A.1    Nagaraj, H.B.2
  • 11
    • 45949097035 scopus 로고    scopus 로고
    • Estimating compaction behavior of fine-grained soils based on compaction energy
    • DOI 10.1139/T08-022
    • O. Sivrikaya, E. Togrol, and C. Kayadelen Estimating compaction behavior of fine-grained soils based on compaction energy Can. Geotech. J. 45 2008 877 887 (Pubitemid 351890303)
    • (2008) Canadian Geotechnical Journal , vol.45 , Issue.6 , pp. 877-887
    • Sivrikaya, O.1    Togrol, E.2    Kayadelen, C.3
  • 13
    • 0030458149 scopus 로고    scopus 로고
    • On the identification of compaction characteristics by neuronets
    • Y.M. Najjar, I.A. Basheer, and W.A. Naouss On the identification of compaction characteristics by neuronets Comput. Geotech. 18 1996 167 187
    • (1996) Comput. Geotech. , vol.18 , pp. 167-187
    • Najjar, Y.M.1    Basheer, I.A.2    Naouss, W.A.3
  • 14
    • 39849106475 scopus 로고    scopus 로고
    • Artificial neural network prediction models for soil compaction and permeability
    • DOI 10.1007/s10706-007-9146-3
    • S.K. Sinha, and M.C. Wang Artificial neural network prediction models for soil compaction and permeability Geotech. Geol. Eng. 26 2008 47 64 (Pubitemid 351314909)
    • (2008) Geotechnical and Geological Engineering , vol.26 , Issue.1 , pp. 47-64
    • Sinha, S.K.1    Wang, M.C.2
  • 17
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of wastewater treatment plant performance using artificial neural networks
    • DOI 10.1016/j.envsoft.2003.10.005, PII S1364815203002172
    • M.M. Hamed, M.G. Khalafallah, and E.A. Hassanien Prediction of wastewater treatment plant performance using artificial neural networks Environ. Modell. Softw. 19 2004 919 928 (Pubitemid 38991765)
    • (2004) Environmental Modelling and Software , vol.19 , Issue.10 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 18
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • G. Cybenco Approximation by superposition of a sigmoidal function Math. Control Signals Syst. 2 1989 303 314
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenco, G.1
  • 19
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feed forward networks are universal approximators Neural Netw. 2 1989 359 366 (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 20
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T. Hagan, and M. Menhaj Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Netw. 5 6 1994 989 993
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 21
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • DOI 10.1061/(ASCE)1084-0699(2007)12:5(532)
    • O. Kisi Streamflow forecasting using different artificial neural network algorithms J. Hydro. Eng. ASCE 12 5 2007 532 539 (Pubitemid 47307903)
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.