메뉴 건너뛰기




Volumn 243, Issue , 2014, Pages 564-571

Characterization and performance study of sulfonated poly ether ether ketone/Fe3O4 nano composite membrane as electrolyte for microbial fuel cell

Author keywords

Inverse spinel structure; Magnetite; Microbial fuel cell; Polymer nano composites; Proton hopping mechanism; Sulfonated poly ether ether ketone

Indexed keywords


EID: 84894087709     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2013.12.103     Document Type: Article
Times cited : (100)

References (34)
  • 1
    • 84857035571 scopus 로고    scopus 로고
    • New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems
    • Ghasemia M., Shahgaldi S., Ismail M., Yaakob Z., Daud W.R.W. New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem. Eng. J. 2012, 184:82-89.
    • (2012) Chem. Eng. J. , vol.184 , pp. 82-89
    • Ghasemia, M.1    Shahgaldi, S.2    Ismail, M.3    Yaakob, Z.4    Daud, W.R.W.5
  • 2
    • 84856378316 scopus 로고    scopus 로고
    • Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology
    • Zhanga B., Feng C., Ni J., Zhang J., Huang W. Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J. Power Sources 2012, 204:34-39.
    • (2012) J. Power Sources , vol.204 , pp. 34-39
    • Zhanga, B.1    Feng, C.2    Ni, J.3    Zhang, J.4    Huang, W.5
  • 4
    • 84871987451 scopus 로고    scopus 로고
    • Power generation of microbial fuel cells (MFCs) with low cathodic platinum loading
    • Carlo S., Baikun L., Pierangela C., Gaetano S. Power generation of microbial fuel cells (MFCs) with low cathodic platinum loading. Int. J. Hydrogen Energy 2013, 38:692-700.
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 692-700
    • Carlo, S.1    Baikun, L.2    Pierangela, C.3    Gaetano, S.4
  • 5
    • 77957901715 scopus 로고    scopus 로고
    • Recent developments in microbial fuel cells: a review
    • Das S., Mangwani N. Recent developments in microbial fuel cells: a review. J. Sci. Ind. Res. 2010, 69:727-731.
    • (2010) J. Sci. Ind. Res. , vol.69 , pp. 727-731
    • Das, S.1    Mangwani, N.2
  • 6
    • 33846842443 scopus 로고    scopus 로고
    • Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
    • Kim J.R., Cheng S., Oh S.E., Logan B.E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41:1004-1009.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 1004-1009
    • Kim, J.R.1    Cheng, S.2    Oh, S.E.3    Logan, B.E.4
  • 7
    • 33750964484 scopus 로고    scopus 로고
    • A microbial fuel cell using permanganate as the cathodic electron acceptor
    • You S., Zhao Q., Zhang J., Jiang J., Zhao S. A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sources 2006, 162:1409-1415.
    • (2006) J. Power Sources , vol.162 , pp. 1409-1415
    • You, S.1    Zhao, Q.2    Zhang, J.3    Jiang, J.4    Zhao, S.5
  • 8
    • 84865020859 scopus 로고    scopus 로고
    • Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell
    • Liling W., Hongliang H., Jianquan S. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. Int. J. Hydrogen Energy 2012, 37:12980-12986.
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 12980-12986
    • Liling, W.1    Hongliang, H.2    Jianquan, S.3
  • 9
    • 70350772359 scopus 로고    scopus 로고
    • Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes
    • Zhang X., Cheng S., Wang X., Huang X., Logan B.E. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Environ. Sci. Technol. 2009, 43:8456-8461.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 8456-8461
    • Zhang, X.1    Cheng, S.2    Wang, X.3    Huang, X.4    Logan, B.E.5
  • 10
    • 39049117489 scopus 로고    scopus 로고
    • Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells
    • Chae K.J., Choi M., Ajayi F.F., Park W., Chang I.S., Kim I.S. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels 2008, 22:169-176.
    • (2008) Energy Fuels , vol.22 , pp. 169-176
    • Chae, K.J.1    Choi, M.2    Ajayi, F.F.3    Park, W.4    Chang, I.S.5    Kim, I.S.6
  • 11
    • 58949088600 scopus 로고    scopus 로고
    • Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation
    • Kim I.S., Chae K.J., Choi M.J., Verstraete W. Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ. Eng. Res. 2008, 13:51-65.
    • (2008) Environ. Eng. Res. , vol.13 , pp. 51-65
    • Kim, I.S.1    Chae, K.J.2    Choi, M.J.3    Verstraete, W.4
  • 12
    • 69549088017 scopus 로고    scopus 로고
    • Modelling and simulation of two-chamber microbial fuel cell
    • Zeng Y., Choo Y.F., Kim B.H., Wu P. Modelling and simulation of two-chamber microbial fuel cell. J. Power Sources 2010, 195:79-89.
    • (2010) J. Power Sources , vol.195 , pp. 79-89
    • Zeng, Y.1    Choo, Y.F.2    Kim, B.H.3    Wu, P.4
  • 13
    • 77952296136 scopus 로고    scopus 로고
    • Improved performance of single-chamber microbial fuel cells through control of membrane deformation
    • Zhang X., Cheng S., Huang X., Logan B.E. Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosen. Bioelectron. 2010, 25:1825-1828.
    • (2010) Biosen. Bioelectron. , vol.25 , pp. 1825-1828
    • Zhang, X.1    Cheng, S.2    Huang, X.3    Logan, B.E.4
  • 14
    • 81555227055 scopus 로고    scopus 로고
    • Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water
    • Sivasankaran A., Sangeetha D. Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water. Bioresour. Technol. 2011, 102:11167-11171.
    • (2011) Bioresour. Technol. , vol.102 , pp. 11167-11171
    • Sivasankaran, A.1    Sangeetha, D.2
  • 15
    • 84863633514 scopus 로고    scopus 로고
    • Sulfonated poly (ether ether ketone)/poly(ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells
    • Lim S.S., Daud W.R.W., Jahim J.M., Ghasemi M., Chong P.S., Ismail M. Sulfonated poly (ether ether ketone)/poly(ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. Int. J. Hydrogen Energy 2012, 37:11409-11424.
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 11409-11424
    • Lim, S.S.1    Daud, W.R.W.2    Jahim, J.M.3    Ghasemi, M.4    Chong, P.S.5    Ismail, M.6
  • 18
    • 0141564949 scopus 로고    scopus 로고
    • Proton conducting oxides
    • Kreuer K.D. Proton conducting oxides. Ann. Rev. Mater. Res. 2003, 33:333-359.
    • (2003) Ann. Rev. Mater. Res. , vol.33 , pp. 333-359
    • Kreuer, K.D.1
  • 19
    • 80054048807 scopus 로고    scopus 로고
    • Proton conducting composite membranes for fuel cell application
    • Bhavani P., Sangeetha D. Proton conducting composite membranes for fuel cell application. Int. J. Hydrogen Energy 2011, 36:14858-14865.
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 14858-14865
    • Bhavani, P.1    Sangeetha, D.2
  • 20
    • 0001444471 scopus 로고
    • The kinetics and mechanism of spillover
    • Levy R.B., Boudart M. The kinetics and mechanism of spillover. J. Catal. 1974, 32:304-314.
    • (1974) J. Catal. , vol.32 , pp. 304-314
    • Levy, R.B.1    Boudart, M.2
  • 21
    • 0026851769 scopus 로고
    • Water-assisted and thermally-enhanced protonic conduction in HZSM-5, effect of gamma-Irradiation on the electric properties
    • Higazy A.A., Kassem M.E. Water-assisted and thermally-enhanced protonic conduction in HZSM-5, effect of gamma-Irradiation on the electric properties. J. Phys. Chem. Solid 1992, 53:549-554.
    • (1992) J. Phys. Chem. Solid , vol.53 , pp. 549-554
    • Higazy, A.A.1    Kassem, M.E.2
  • 24
    • 0006149533 scopus 로고
    • Spillover in heterogeneous catalysis
    • Conner W.C., Falconer J.L. Spillover in heterogeneous catalysis. Chem. Rev. 1995, 95:759-788.
    • (1995) Chem. Rev. , vol.95 , pp. 759-788
    • Conner, W.C.1    Falconer, J.L.2
  • 25
    • 0001140147 scopus 로고    scopus 로고
    • Hydrogen spillover in heterogeneous catalysis
    • Rozanov V.V., Krylov O.V. Hydrogen spillover in heterogeneous catalysis. Russ. Chem. Rev. 1997, 66:107-119.
    • (1997) Russ. Chem. Rev. , vol.66 , pp. 107-119
    • Rozanov, V.V.1    Krylov, O.V.2
  • 26
    • 0037194759 scopus 로고    scopus 로고
    • Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water
    • Cortright R.D., Davda R.R., Dumesic J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418:964-967.
    • (2002) Nature , vol.418 , pp. 964-967
    • Cortright, R.D.1    Davda, R.R.2    Dumesic, J.A.3
  • 27
    • 84864966821 scopus 로고    scopus 로고
    • 4 (001) surface: insights from first principles
    • 4 (001) surface: insights from first principles. J. Phys. Chem. C 2012, 116:16447-16453.
    • (2012) J. Phys. Chem. C , vol.116 , pp. 16447-16453
    • Mulakaluri, N.1    Pentcheva, R.2
  • 29
    • 57649211693 scopus 로고    scopus 로고
    • Evaluation of sulfonated poly (ether ether ketone) silicotungstic acid composite membranes for fuel cell applications
    • Guhan S., Sangeetha D. Evaluation of sulfonated poly (ether ether ketone) silicotungstic acid composite membranes for fuel cell applications. Int. J. Polym. Mater. 2009, 58:87-98.
    • (2009) Int. J. Polym. Mater. , vol.58 , pp. 87-98
    • Guhan, S.1    Sangeetha, D.2
  • 30
    • 84875240264 scopus 로고    scopus 로고
    • Characterization and performance study on chitosan-functionalized multi walled carbon nano tube as separator in microbial fuel cell
    • Prabhu N.V., Sangeetha D. Characterization and performance study on chitosan-functionalized multi walled carbon nano tube as separator in microbial fuel cell. J. Memb. Sci. 2013, 435:92-98.
    • (2013) J. Memb. Sci. , vol.435 , pp. 92-98
    • Prabhu, N.V.1    Sangeetha, D.2
  • 31
    • 18844451775 scopus 로고    scopus 로고
    • Electricity generation using membrane and salt bridge microbial fuel cells
    • Min B., Cheng S., Logan B.E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 2005, 39:1675-1686.
    • (2005) Water Res. , vol.39 , pp. 1675-1686
    • Min, B.1    Cheng, S.2    Logan, B.E.3
  • 33
    • 33748545968 scopus 로고    scopus 로고
    • Effects of membrane cation transport on pH and microbial fuel cell performance
    • Rozendal R.A., Hamelers H.M., Buisman C.J.N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 2006, 40:5206-5211.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5206-5211
    • Rozendal, R.A.1    Hamelers, H.M.2    Buisman, C.J.N.3
  • 34
    • 84880388310 scopus 로고    scopus 로고
    • Simultaneous wastewater treatment and electricity generation by microbial fuel cell: performance comparison and cost investigation of using Nafion 117 and SPEEK as separators
    • Ghasemi M., Daud W.R.W., Ismail A.F., Jafari Y., Ismail M., Mayahi A., Othman J. Simultaneous wastewater treatment and electricity generation by microbial fuel cell: performance comparison and cost investigation of using Nafion 117 and SPEEK as separators. Desalination 2013, 325:1-6.
    • (2013) Desalination , vol.325 , pp. 1-6
    • Ghasemi, M.1    Daud, W.R.W.2    Ismail, A.F.3    Jafari, Y.4    Ismail, M.5    Mayahi, A.6    Othman, J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.