메뉴 건너뛰기




Volumn 412, Issue , 2013, Pages 384-393

Defensive Forecast for conformal bounded regression

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84894055493     PISSN: 18684238     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-41142-7_39     Document Type: Conference Paper
Times cited : (3)

References (19)
  • 2
    • 84948132465 scopus 로고    scopus 로고
    • Comparing the Bayes and typicalness frameworks
    • In: Flach, P.A., De Raedt, L. (eds.),. Springer, Heidelberg
    • Melluish, T., Saunders, C., Nouretdinov, I., Vovk, V.: Comparing the Bayes and typicalness frameworks. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 360-371. Springer, Heidelberg (2001).
    • (2001) ECML 2001. LNCS (LNAI) , vol.2167 , pp. 360-371
    • Melluish, T.1    Saunders, C.2    Nouretdinov, I.3    Vovk, V.4
  • 4
    • 33947281129 scopus 로고    scopus 로고
    • Hedging Predictions in Machine Learning
    • Gammerman, A., Vovk, V.: Hedging Predictions in Machine Learning. Computer Journal 50(2), 151-172 (2007).
    • (2007) Computer Journal , vol.50 , Issue.2 , pp. 151-172
    • Gammerman, A.1    Vovk, V.2
  • 5
    • 80051799000 scopus 로고    scopus 로고
    • Reliable Prediction Intervals with Regression Neural Networks
    • Papadopoulos, H., Haralambousm, H.: Reliable Prediction Intervals with Regression Neural Networks. Neural Networks 24(8), 842-851 (2011).
    • (2011) Neural Networks , vol.24 , Issue.8 , pp. 842-851
    • Papadopoulos, H.1    Haralambousm, H.2
  • 7
    • 84870861519 scopus 로고    scopus 로고
    • Reliable Probability Estimates Based on Support Vector Machines for Large Multiclass Datasets
    • In: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Karatzas, K., Sioutas, S. (eds.)
    • Lambrou, A., Papadopoulos, H., Nouretdinov, I., Gammerman, A.: Reliable Probability Estimates Based on Support Vector Machines for Large Multiclass Datasets. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Karatzas, K., Sioutas, S. (eds.) Artificial Intelligence Applications and Innovations, Part II. IFIP AICT, vol. 382, pp. 182-191. Springer, Heidelberg (2012).
    • (2012) Artificial Intelligence Applications and Innovations , vol.382 , pp. 182-191
    • Lambrou, A.1    Papadopoulos, H.2    Nouretdinov, I.3    Gammerman, A.4
  • 9
    • 84894098478 scopus 로고    scopus 로고
    • Kernel methods
    • Kernel methods. Wiki for On-Line Prediction, http://onlineprediction.net/?n=Main.KernelMethods.
    • Wiki for On-Line Prediction
  • 11
    • 14344250451 scopus 로고    scopus 로고
    • Support Vector Learning for Interdependent and Structured Output Spaces
    • Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support Vector Learning for Interdependent and Structured Output Spaces. In: ICML (2004).
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 13
    • 84862778147 scopus 로고    scopus 로고
    • Alzheimer's Disease Neuroimaging Initiative. Ensemble sparce classification of Alzheimer's disease
    • Liu, M., Zhang, D., Shen, D.: Alzheimer's Disease Neuroimaging Initiative. Ensemble sparce classification of Alzheimer's disease. Neuroimage 60, 1106-1116 (2012).
    • (2012) Neuroimage , vol.60 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 14
    • 79952073234 scopus 로고    scopus 로고
    • Alzheimer's Disease Neuroimaging Initiative. Multimodal Classification of Alzheimer's Disease and Mild Congitive Impairment
    • Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Alzheimer's Disease Neuroimaging Initiative. Multimodal Classification of Alzheimer's Disease and Mild Congitive Impairment. Neuroimage 55(3), 856-867 (2011).
    • (2011) Neuroimage , vol.55 , Issue.3 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 15
    • 77955307468 scopus 로고    scopus 로고
    • Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
    • Destriux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1-15 (2010).
    • (2010) Neuroimage , vol.53 , pp. 1-15
    • Destriux, C.1    Fischl, B.2    Dale, A.3    Halgren, E.4
  • 16
    • 84862598129 scopus 로고    scopus 로고
    • Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data
    • doi:10.1186/1471-2377-12-46
    • Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., Raghavan, N., Novak, G., DiBernard, A., Narayan, V.A.: Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurology 12, 46 (2012), doi:10.1186/1471-2377-12-46.
    • (2012) BMC Neurology , vol.12 , pp. 46
    • Ye, J.1    Farnum, M.2    Yang, E.3    Verbeeck, R.4    Lobanov, V.5    Raghavan, N.6    Novak, G.7    DiBernard, A.8    Narayan, V.A.9
  • 19
    • 79954987179 scopus 로고    scopus 로고
    • Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression
    • Nouretdinov, I., Costafreda, S.G., Gammerman, A., Chervonenkis, A., Vovk, V., Vapnik, V., Fu, C.H.Y.: Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage 56(2), 809-813 (2011).
    • (2011) Neuroimage , vol.56 , Issue.2 , pp. 809-813
    • Nouretdinov, I.1    Costafreda, S.G.2    Gammerman, A.3    Chervonenkis, A.4    Vovk, V.5    Vapnik, V.6    Fu, C.H.Y.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.