-
1
-
-
84255199841
-
Context-aware recommender systems
-
Adomavicius, G.; Mobasher, B.; Ricci, F.; Tuzhilin, A.: Context-aware recommender systems. AI Mag. 32(3), 67-80 (2011)
-
(2011)
AI Mag.
, vol.32
, Issue.3
, pp. 67-80
-
-
Adomavicius, G.1
Mobasher, B.2
Ricci, F.3
Tuzhilin, A.4
-
2
-
-
79952742165
-
Context-aware recommender systems
-
Ricci, F.; Rokach, L.; Shapira, B.; Kantor, P.B. (eds.) Springer, New York
-
Adomavicius, G.; Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F.; Rokach, L.; Shapira, B.; Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217-253. Springer, New York (2011)
-
(2011)
Recommender Systems Handbook
, pp. 217-253
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
3
-
-
84894282692
-
Experimental evaluation of context-dependent collaborative filtering using item splitting
-
doi: 10.1007/S11257-012-9137-9
-
Baltrunas, L.; Ricci, F.: Experimental evaluation of context-dependent collaborative filtering using item splitting. User Model User-Adap. Inter. (2014). doi: 10.1007/S11257-012-9137-9
-
(2014)
User Model User-Adap. Inter.
-
-
Baltrunas, L.1
Ricci, F.2
-
4
-
-
84894047367
-
Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols
-
doi: 10.1007/S11257-012-9136-x
-
Campos, P.G.; Díez, F.; Cantador, I.: Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols. User Modeling and User Model User-Adap. Inter. (2014). doi: 10.1007/S11257-012- 9136-x
-
(2014)
User Modeling and User Model User-Adap. Inter.
-
-
Campos, P.G.1
Díez, F.2
Cantador, I.3
-
6
-
-
84923938582
-
-
Cambridge University Press, Cambridge
-
Jannach, D.; Zanker, M.; Felfernig, A.; Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2010)
-
(2010)
Recommender Systems: An Introduction
-
-
Jannach, D.1
Zanker, M.2
Felfernig, A.3
Friedrich, G.4
-
7
-
-
84894081337
-
Comparing context-aware recommender systems in terms of accuracy and diversity: Which contextual modeling, pre-filtering and post-filtering methods perform the best
-
doi: 10.1007/S11257-012-9135-y
-
Panniello, U.; Tuzhilin, A.; Gorgoglione, M.: Comparing context-aware recommender systems in terms of accuracy and diversity: Which contextual modeling, pre-filtering and post-filtering methods perform the best. User Model User-Adap. Inter. (2014). doi: 10.1007/S11257-012-9135-y
-
(2014)
User Model User-Adap. Inter.
-
-
Panniello, U.1
Tuzhilin, A.2
Gorgoglione, M.3
|