메뉴 건너뛰기




Volumn 32, Issue 5, 2014, Pages 555-564

Production modeling in the oil and natural gas industry: An application of trend analysis

Author keywords

modeling; natural gas; oil; trend analysis

Indexed keywords


EID: 84893970393     PISSN: 10916466     EISSN: 15322459     Source Type: Journal    
DOI: 10.1080/10916466.2013.825271     Document Type: Article
Times cited : (122)

References (33)
  • 1
    • 84893960785 scopus 로고    scopus 로고
    • American University. Retrieved from
    • American University. (2012). SPSS regressions. Retrieved from www.american.edu/ctrl/upload/SPSS Regression Spring 2010.pdf
    • (2012) SPSS Regressions
  • 2
    • 84862535656 scopus 로고    scopus 로고
    • Illusions in regression analysis
    • Armstrong S. J. (2012). Illusions in regression analysis. Int. J. Forecast. 28:689-694.
    • (2012) Int. J. Forecast , vol.28 , pp. 689-694
    • Armstrong, S.J.1
  • 3
    • 84893951507 scopus 로고    scopus 로고
    • Modeling and projection of primary energy consumption by the sources
    • in press a
    • Aydin G. (in press a). Modeling and projection of primary energy consumption by the sources. Energy Sources Part B.
    • Energy Sources Part B
    • Aydin, G.1
  • 4
    • 84889670519 scopus 로고    scopus 로고
    • Modeling of coal related co2 emissions and projections into the future planning
    • Aydin G. (2014). Modeling of coal related CO2 emissions and projections into the future planning. Energ. Source. A: 36:191-201.
    • (2014) Energ. Source. A , vol.36 , pp. 191-201
    • Aydin, G.1
  • 5
    • 84893956045 scopus 로고    scopus 로고
    • Application of trend analysis for coal demand modeling
    • in press b
    • Aydin G. (in press b). Application of trend analysis for coal demand modeling. Energy Sources Part B.
    • Energy Sources Part B
    • Aydin, G.1
  • 6
    • 77953422366 scopus 로고    scopus 로고
    • Evaluation of geologic storage options of co2: Applicability, cost, storage capacity and safety
    • Aydin G. Karakurt I., and Aydiner K. (2010). Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety. Energy Policy, 38:5072-5080.
    • (2010) Energy Policy , vol.38 , pp. 5072-5080
    • Aydin, G.1    Karakurt, I.2    Aydiner, K.3
  • 9
    • 44649126699 scopus 로고    scopus 로고
    • Transport energy modeling with meta-heuristic harmony search algorithm, an application to turkey
    • Ceylan H. Ceylan H. Haldenbilen S., and Baskan O. (2008). Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey. Energy Policy 36:2527-2535.
    • (2008) Energy Policy , vol.36 , pp. 2527-2535
    • Ceylan, H.1    Ceylan, H.2    Haldenbilen, S.3    Baskan, O.4
  • 10
    • 33845445508 scopus 로고    scopus 로고
    • A supply model for crude oil and natural gas in the middle east
    • Chedid R. Kobrosly M., and Ghajar R. (2007). A supply model for crude oil and natural gas in the Middle East. Energy Policy 35:2096-2109
    • (2007) Energy Policy , vol.35 , pp. 2096-2109
    • Chedid, R.1    Kobrosly, M.2    Ghajar, R.3
  • 11
    • 84893968806 scopus 로고    scopus 로고
    • ExxonMobil.Retrieved from
    • ExxonMobil. (2013). Factors affecting future results. Retrieved from http://phx.corporate-ir.net/External.Fileitem= UGFyZW50SUQ9NTIxMjR8Q2hpbGRJRD0tMXxUeXBlPTM=&t=1.
    • (2013) Factors Affecting Future Results
  • 12
    • 84878217361 scopus 로고    scopus 로고
    • Scenario analysis of urban energy saving and carbon abatement policies: A case study of beijing city
    • Feng Y. Y., and Zhang X. L. (2012). Scenario analysis of urban energy saving and carbon abatement policies: A case study of Beijing city. China Procedia Environ. Sci. 13:632-644.
    • (2012) China Procedia Environ. Sci , vol.13 , pp. 632-644
    • Feng, Y.Y.1    Zhang, X.L.2
  • 14
    • 0034974417 scopus 로고    scopus 로고
    • A new heuristic optimization algorithm: Harmony search
    • Geem Z.W. Kim J. H., and Loganathan G. V. (2001). A new heuristic optimization algorithm: harmony search. Simulation 76:60-68.
    • (2001) Simulation , vol.76 , pp. 60-68
    • Geem, Z.W.1    Kim, J.H.2    Loganathan, G.V.3
  • 17
    • 3543079934 scopus 로고    scopus 로고
    • Genetic algorithm approach to estimate transport energy demand in turkey
    • Haldenbilen S., and Ceylan H. (2005). Genetic algorithm approach to estimate transport energy demand in Turkey. Energy Policy 33:89-98.
    • (2005) Energy Policy , vol.33 , pp. 89-98
    • Haldenbilen, S.1    Ceylan, H.2
  • 18
    • 0037061422 scopus 로고    scopus 로고
    • A comparative study of neural network and box-jenkins arima modeling in time series predictions
    • Ho S. L. Xie M., and Goh T. N. (2002). A comparative study of neural network and Box-Jenkins ARIMA modeling in time series predictions. Comput. Indust. Eng. 42:371-375.
    • (2002) Comput. Indust. Eng , vol.42 , pp. 371-375
    • Ho, S.L.1    Xie, M.2    Goh, T.N.3
  • 19
    • 41849103458 scopus 로고    scopus 로고
    • Factors that will influence oil and gas supply and demand in the 21st century
    • Holditch A. S., and Chianelli R. R. (2008). Factors that will influence oil and gas supply and demand in the 21st century. MRS Bull. 33:317-323
    • (2008) MRS Bull , vol.33 , pp. 317-323
    • Holditch, A.S.1    Chianelli, R.R.2
  • 20
    • 80053328418 scopus 로고    scopus 로고
    • Sources and mitigation of methane emissions by sectors: A critical review
    • Karakurt I. Aydin G., and Aydiner K. (2012). Sources and mitigation of methane emissions by sectors: A critical review. Renew. Energy 39:40-48.
    • (2012) Renew. Energy , vol.39 , pp. 40-48
    • Karakurt, I.1    Aydin, G.2    Aydiner, K.3
  • 21
    • 77957076653 scopus 로고    scopus 로고
    • Forecasting of co2 emissions from fuel combustion using trend analysis
    • Kone C. A., and Buke T. (2010). Forecasting of CO2 emissions from fuel combustion using trend analysis. Renew. Sustain. Energy Rev. 14:2906-2915.
    • (2010) Renew. Sustain. Energy Rev , vol.14 , pp. 2906-2915
    • Kone, C.A.1    Buke, T.2
  • 22
    • 0141585069 scopus 로고    scopus 로고
    • The future of the oil and gas industry: Past approaches, new challenges
    • Longwell J. H. (2002). The future of the oil and gas industry: past approaches, new challenges. World Energy 5:100-104.
    • (2002) World Energy , vol.5 , pp. 100-104
    • Longwell, J.H.1
  • 23
    • 33749674757 scopus 로고    scopus 로고
    • The greenhouse effect: A new source of energy
    • Meunier F. (2007). The greenhouse effect: A new source of energy. Appl. Therm. Eng. 27:658-664.
    • (2007) Appl. Therm. Eng , vol.27 , pp. 658-664
    • Meunier, F.1
  • 24
    • 33746976184 scopus 로고    scopus 로고
    • Use of artificial neural networks for transport energy demand modeling
    • Murat S. Y., and Ceylan H. (2006). Use of artificial neural networks for transport energy demand modeling. Energy Policy 34:3165-3172.
    • (2006) Energy Policy , vol.34 , pp. 3165-3172
    • Murat, S.Y.1    Ceylan, H.2
  • 26
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • Shi J. Guo J., and Zheng S. (2012). Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 16:3471-3480.
    • (2012) Renew. Sustain. Energy Rev , vol.16 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 27
    • 0034352997 scopus 로고    scopus 로고
    • Perils of long-range energy forecasting: Reflections on looking far ahead
    • Smil,W. (2000). Perils of long-range energy forecasting: Reflections on looking far ahead. Technol. Forecast. Social Change 65:251-264.
    • (2000) Technol. Forecast. Social Change , vol.65 , pp. 251-264
    • Smil, W.1
  • 29
    • 33746936159 scopus 로고    scopus 로고
    • Energy forecasting: Predictions, reality and analysis of causes of error
    • Utgikar P. V., and Scott P. J. (2006). Energy forecasting: predictions, reality and analysis of causes of error. Energy Policy 34:3087-3092.
    • (2006) Energy Policy , vol.34 , pp. 3087-3092
    • Utgikar, P.V.1    Scott, P.J.2
  • 30
    • 43149117467 scopus 로고    scopus 로고
    • Improvement of energy demand forecasts using swarm intelligence. The case of turkey with projections to 2025
    • Ünler A. (2008). Improvement of energy demand forecasts using swarm intelligence. The case of Turkey with projections to 2025. Energy Policy 36:1937-1944.
    • (2008) Energy Policy , vol.36 , pp. 1937-1944
    • Ünler, A.1
  • 31
    • 70349469395 scopus 로고    scopus 로고
    • Coal consumption and economic growth revisited
    • Wolde-Rufael Y. (2010). Coal consumption and economic growth revisited. Appl. Energ. 87:160-167.
    • (2010) Appl. Energ , vol.87 , pp. 160-167
    • Wolde-Rufael, Y.1
  • 32
    • 80053361577 scopus 로고    scopus 로고
    • Energy demand projection of china using a path-coefficient analysis and pso-ga approach
    • Yu S. Zhu K., and Zhang X. (2012). Energy demand projection of China using a path-coefficient analysis and PSO-GA approach. Energy Convers. Manage. 53:142-153.
    • (2012) Energy Convers. Manage , vol.53 , pp. 142-153
    • Yu, S.1    Zhu, K.2    Zhang, X.3
  • 33
    • 33746839289 scopus 로고    scopus 로고
    • A trigonometric grey prediction approach to forecasting electricity demand
    • Zhou P. Ang W. B., and Poh L. K. (2006). A trigonometric grey prediction approach to forecasting electricity demand. Energy 31:2839-2847.
    • (2006) Energy , vol.31 , pp. 2839-2847
    • Zhou, P.1    Ang, W.B.2    Poh, L.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.