-
1
-
-
58149216052
-
Signaling cross-talk between TGF-β/BMP and other pathways
-
Guo X, Wang XF. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 2009; 19(1):71-88.
-
(2009)
Cell Res.
, vol.19
, Issue.1
, pp. 71-88
-
-
Guo, X.1
Wang, X.F.2
-
2
-
-
70450187617
-
The regulation of TGFαsignal transduction
-
Moustakas A, Heldin CH. The regulation of TGFαsignal transduction. Development. 2009; 136(22):3699-3714.
-
(2009)
Development
, vol.136
, Issue.22
, pp. 3699-3714
-
-
Moustakas, A.1
Heldin, C.H.2
-
3
-
-
23044466047
-
Specificity and versatility in TGF-βsignaling through Smads
-
Feng XH, Derynck R. Specificity and versatility in TGF-βsignaling through Smads. Annu Rev Cell Dev Biol. 2005;21:659-693.
-
(2005)
Annu Rev Cell Dev Biol.
, vol.21
, pp. 659-693
-
-
Feng, X.H.1
Derynck, R.2
-
4
-
-
47549090432
-
TGFβin cancer
-
Massague J. TGFβin cancer. Cell. 2008; 134(2):215-230.
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 215-230
-
-
Massague, J.1
-
5
-
-
20444430827
-
Nuclear targeting of transforming growth factor-β-activated Smad complexes
-
Chen HB, Rud JG, Lin K, Xu L. Nuclear targeting of transforming growth factor-β-activated Smad complexes. J Biol Chem. 2005;280(22):21329-21336.
-
(2005)
J Biol Chem.
, vol.280
, Issue.22
, pp. 21329-21336
-
-
Chen, H.B.1
Rud, J.G.2
Lin, K.3
Xu, L.4
-
6
-
-
33646950265
-
PPM1A functions as a Smad phosphatase to terminate TGFβsignaling
-
Lin X, et al. PPM1A functions as a Smad phosphatase to terminate TGFβsignaling. Cell. 2006; 125(5):915-928.
-
(2006)
Cell
, vol.125
, Issue.5
, pp. 915-928
-
-
Lin, X.1
-
7
-
-
61749096309
-
Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-βsignaling
-
Dai F, Lin X, Chang C, Feng XH. Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-βsignaling. Dev Cell. 2009;16(3):345-357.
-
(2009)
Dev Cell
, vol.16
, Issue.3
, pp. 345-357
-
-
Dai, F.1
Lin, X.2
Chang, C.3
Feng, X.H.4
-
8
-
-
79959891289
-
Recruitment of TIF1γto chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities
-
Agricola E, Randall RA, Gaarenstroom T, Dupont S, Hill CS. Recruitment of TIF1γto chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. Mol Cell. 2011;43(1):85-96.
-
(2011)
Mol Cell
, vol.43
, Issue.1
, pp. 85-96
-
-
Agricola, E.1
Randall, R.A.2
Gaarenstroom, T.3
Dupont, S.4
Hill, C.S.5
-
9
-
-
58149093172
-
FAM/USP9x, a deubiquitinating enzyme essential for TGFβsignaling, controls Smad4 monoubiquitination
-
Dupont S, et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFβsignaling, controls Smad4 monoubiquitination. Cell. 2009;136(1):123-135.
-
(2009)
Cell
, vol.136
, Issue.1
, pp. 123-135
-
-
Dupont, S.1
-
10
-
-
80051488277
-
Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario site of the breast cancer family registry (CFR)
-
Tram E, Ibrahim-Zada I, Briollais L, Knight JA, Andrulis IL, Ozcelik H. Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario site of the breast cancer family registry (CFR). Breast Cancer Res. 2011;13(4):R77.
-
(2011)
Breast Cancer Res.
, vol.13
, Issue.4
-
-
Tram, E.1
Ibrahim-Zada, I.2
Briollais, L.3
Knight, J.A.4
Andrulis, I.L.5
Ozcelik, H.6
-
11
-
-
0037081179
-
Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: A tissue microarray study
-
Xie W, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res. 2002; 62(2):497-505.
-
(2002)
Cancer Res.
, vol.62
, Issue.2
, pp. 497-505
-
-
Xie, W.1
-
12
-
-
34547778078
-
Prognostic significance of TGFβ-1 and pSmad2/3 in breast cancer patients with T1-2, N0 tumours
-
Koumoundourou D, et al. Prognostic significance of TGFβ-1 and pSmad2/3 in breast cancer patients with T1-2, N0 tumours. Anticancer Res. 2007; 27(4C):2613-2620.
-
(2007)
Anticancer Res.
, vol.27
, Issue.4 C
, pp. 2613-2620
-
-
Koumoundourou, D.1
-
13
-
-
74949132577
-
TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer
-
Araki S, et al. TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest. 2010;120(1):290-302.
-
(2010)
J Clin Invest.
, vol.120
, Issue.1
, pp. 290-302
-
-
Araki, S.1
-
14
-
-
68249092353
-
A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-βmediated epithelial-mesenchymal transition
-
Vincent T, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-βmediated epithelial-mesenchymal transition. Nat Cell Biol. 2009;11(8):943-950.
-
(2009)
Nat Cell Biol.
, vol.11
, Issue.8
, pp. 943-950
-
-
Vincent, T.1
-
15
-
-
84866484311
-
A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFβ-mediated breast cancer cell migration and invasion
-
Dai M, Al-Odaini AA, Arakelian A, Rabbani SA, Ali S, Lebrun JJ. A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFβ-mediated breast cancer cell migration and invasion. Breast Cancer Res. 2012; 14(5):R127.
-
(2012)
Breast Cancer Res.
, vol.14
, Issue.5
-
-
Dai, M.1
Al-Odaini, A.A.2
Arakelian, A.3
Rabbani, S.A.4
Ali, S.5
Lebrun, J.J.6
-
16
-
-
78650802382
-
Deregulation of FoxM1b leads to tumour metastasis
-
Park HJ, et al. Deregulation of FoxM1b leads to tumour metastasis. EMBO Mol Med. 2011;3(1):21-34.
-
(2011)
EMBO Mol Med.
, vol.3
, Issue.1
, pp. 21-34
-
-
Park, H.J.1
-
17
-
-
79851492288
-
Multiple faces of FoxM1 transcription factor: Lessons from transgenic mouse models
-
Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle. 2011; 10(3):396-405.
-
(2011)
Cell Cycle.
, vol.10
, Issue.3
, pp. 396-405
-
-
Kalin, T.V.1
Ustiyan, V.2
Kalinichenko, V.V.3
-
18
-
-
13944274222
-
FoxM1 is required for execution of the mitotic programme and chromosome stability
-
Laoukili J, et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 2005;7(2):126-136.
-
(2005)
Nat Cell Biol.
, vol.7
, Issue.2
, pp. 126-136
-
-
Laoukili, J.1
-
19
-
-
81255205373
-
A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells
-
Anders L, et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20(5):620-634.
-
(2011)
Cancer Cell
, vol.20
, Issue.5
, pp. 620-634
-
-
Anders, L.1
-
20
-
-
80054774352
-
FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis
-
Zhang N, et al. FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20(4):427-442.
-
(2011)
Cancer Cell
, vol.20
, Issue.4
, pp. 427-442
-
-
Zhang, N.1
-
21
-
-
40749137718
-
Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer
-
Bektas N, et al. Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC Cancer. 2008;8:42.
-
(2008)
BMC Cancer
, vol.8
, pp. 42
-
-
Bektas, N.1
-
22
-
-
77953744612
-
FoxM1 mediates resistance to herceptin and paclitaxel
-
Carr JR, Park HJ, Wang Z, Kiefer MM, Raychaudhuri P. FoxM1 mediates resistance to herceptin and paclitaxel. Cancer Res. 2010;70(12):5054-5063.
-
(2010)
Cancer Res.
, vol.70
, Issue.12
, pp. 5054-5063
-
-
Carr, J.R.1
Park, H.J.2
Wang, Z.3
Kiefer, M.M.4
Raychaudhuri, P.5
-
23
-
-
20444477535
-
Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe
-
Wonsey DR, Follettie MT. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res. 2005;65(12):5181-5189.
-
(2005)
Cancer Res.
, vol.65
, Issue.12
, pp. 5181-5189
-
-
Wonsey, D.R.1
Follettie, M.T.2
-
24
-
-
75149117842
-
FOXM1 confers acquired cisplatin resistance in breast cancer cells
-
Kwok JM, et al. FOXM1 confers acquired cisplatin resistance in breast cancer cells. Mol Cancer Res. 2010;8(1):24-34.
-
(2010)
Mol Cancer Res.
, vol.8
, Issue.1
, pp. 24-34
-
-
Kwok, J.M.1
-
25
-
-
58149239731
-
Ski and Sno N, potent negative regulators of TGF-beta signaling
-
Deheuninck J, Luo K. Ski and Sno N, potent negative regulators of TGF-beta signaling. Cell Res. 2009;19(1):47-57.
-
(2009)
Cell Res.
, vol.19
, Issue.1
, pp. 47-57
-
-
Deheuninck, J.1
Luo, K.2
-
26
-
-
0033515620
-
A Smad tran-scriptional corepressor
-
Wotton D, Lo RS, Lee S, Massague J. A Smad tran-scriptional corepressor. Cell. 1999;97(1):29-39.
-
(1999)
Cell
, vol.97
, Issue.1
, pp. 29-39
-
-
Wotton, D.1
Lo, R.S.2
Lee, S.3
Massague, J.4
-
27
-
-
33646876973
-
Hematopoiesis controlled by distinct TIF1γand Smad4 branches of the TGFβ; Pathway
-
He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J. Hematopoiesis controlled by distinct TIF1γand Smad4 branches of the TGFβ; pathway. Cell. 2006;125(5):929-941.
-
(2006)
Cell
, vol.125
, Issue.5
, pp. 929-941
-
-
He, W.1
Dorn, D.C.2
Erdjument-Bromage, H.3
Tempst, P.4
Moore, M.A.5
Massague, J.6
-
28
-
-
83055168263
-
Regulation of breast cancer metastasis by Runx2 and estrogen signaling: The role of SNAI2
-
Chimge NO, et al. Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2. Breast Cancer Res. 2011;13(6):R127.
-
(2011)
Breast Cancer Res.
, vol.13
, Issue.6
-
-
Chimge, N.O.1
-
29
-
-
33749371302
-
Snail and Slug play distinct roles during breast carcinoma progression
-
Côme C, et al. Snail and Slug play distinct roles during breast carcinoma progression. Clin Cancer Res. 2006;12(18):5395-5402.
-
(2006)
Clin Cancer Res.
, vol.12
, Issue.18
, pp. 5395-5402
-
-
Côme, C.1
-
30
-
-
80054784515
-
The transcription factors Snail and Slug activate the transforming growth factor-βsignaling pathway in breast cancer
-
Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA. The transcription factors Snail and Slug activate the transforming growth factor-βsignaling pathway in breast cancer. PLoS One. 2011;6(10):e26514.
-
(2011)
PLoS One
, vol.6
, Issue.10
-
-
Dhasarathy, A.1
Phadke, D.2
Mav, D.3
Shah, R.R.4
Wade, P.A.5
-
31
-
-
22144490495
-
Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis
-
Han G, et al. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest. 2005;115(7):1714-1723.
-
(2005)
J Clin Invest.
, vol.115
, Issue.7
, pp. 1714-1723
-
-
Han, G.1
-
32
-
-
84863107923
-
FoxM1 regulates mammary luminal cell fate
-
Carr JR, et al. FoxM1 regulates mammary luminal cell fate. Cell Rep. 2012;1(6):715-729.
-
(2012)
Cell Rep.
, vol.1
, Issue.6
, pp. 715-729
-
-
Carr, J.R.1
-
33
-
-
77954173919
-
DEDD negatively regulates transforming growth factor-β1 signaling by interacting with Smad3
-
Xue JF, et al. DEDD negatively regulates transforming growth factor-β1 signaling by interacting with Smad3. FEBS Lett. 2010;584(14):3028-3034.
-
(2010)
FEBS Lett.
, vol.584
, Issue.14
, pp. 3028-3034
-
-
Xue, J.F.1
-
34
-
-
77949265948
-
Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis
-
Petersen M, et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene. 2010;29(9):1351-1361.
-
(2010)
Oncogene
, vol.29
, Issue.9
, pp. 1351-1361
-
-
Petersen, M.1
-
35
-
-
20444456664
-
The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature
-
Kim IM, Ramakrishna S, Gusarova GA, Yoder HM, Costa RH, Kalinichenko VV. The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature. J Biol Chem. 2005;280(23):22278-22286.
-
(2005)
J Biol Chem.
, vol.280
, Issue.23
, pp. 22278-22286
-
-
Kim, I.M.1
Ramakrishna, S.2
Gusarova, G.A.3
Yoder, H.M.4
Costa, R.H.5
Kalinichenko, V.V.6
-
36
-
-
68249108045
-
Inactivation of TIF1γcooperates with Kras to induce cystic tumors of the pancreas
-
Vincent DF, et al. Inactivation of TIF1γcooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet. 2009;5(7):e1000575.
-
(2009)
PLoS Genet.
, vol.5
, Issue.7
-
-
Vincent, D.F.1
-
37
-
-
84455167662
-
A poised chromatin platform for TGF-βaccess to master regulators
-
Xi Q, et al. A poised chromatin platform for TGF-βaccess to master regulators. Cell. 2011; 147(7):1511-1524.
-
(2011)
Cell
, vol.147
, Issue.7
, pp. 1511-1524
-
-
Xi, Q.1
-
38
-
-
84861610442
-
Tif1βsuppresses murine pancreatic tumoral transformation by a Smad4-independent pathway
-
Vincent DF, et al. Tif1βsuppresses murine pancreatic tumoral transformation by a Smad4-independent pathway. Am J Pathol. 2012;180(6):2214- 2221.
-
(2012)
Am J Pathol.
, vol.180
, Issue.6
, pp. 2214-2221
-
-
Vincent, D.F.1
-
39
-
-
84872875594
-
Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition
-
Balli D, et al. Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. EMBO J. 2013;32(2):231-244.
-
(2013)
EMBO J
, vol.32
, Issue.2
, pp. 231-244
-
-
Balli, D.1
-
40
-
-
77952896646
-
TGFβsignalling: A complex web in cancer progression
-
Ikushima H, Miyazono K. TGFβsignalling: a complex web in cancer progression. Nat Rev Cancer. 2010; 10(6):415-424.
-
(2010)
Nat Rev Cancer
, vol.10
, Issue.6
, pp. 415-424
-
-
Ikushima, H.1
Miyazono, K.2
|