메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

Hybrid model based on genetic algorithms and SVM applied to variable selection within fruit juice classification

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; BEVERAGE; CHEMISTRY; CLASSIFICATION; FRUIT; MALUS; SUPPORT VECTOR MACHINE;

EID: 84893829022     PISSN: None     EISSN: 1537744X     Source Type: Journal    
DOI: 10.1155/2013/982438     Document Type: Article
Times cited : (20)

References (71)
  • 2
    • 0000727041 scopus 로고
    • The characteristic selection problem in recognition systems
    • Lewis P., The characteristic selection problem in recognition systems. IRE Transactions on Information Theory 1962 8 171 178
    • (1962) IRE Transactions on Information Theory , vol.8 , pp. 171-178
    • Lewis, P.1
  • 4
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Saeys Y., Inza I., Larrañaga P., A review of feature selection techniques in bioinformatics. Bioinformatics 2007 23 19 2507 2517 2-s2.0-35748932917 10.1093/bioinformatics/btm344 (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 8
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • 2-s2.0-0037350844 10.1002/cem.785
    • Barker M., Rayens W., Partial least squares for discrimination. Journal of Chemometrics 2003 17 3 166 173 2-s2.0-0037350844 10.1002/cem.785
    • (2003) Journal of Chemometrics , vol.17 , Issue.3 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 10
    • 31344450644 scopus 로고    scopus 로고
    • Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms
    • DOI 10.1016/j.talanta.2005.08.042, PII S0039914005005473
    • Ramadan Z., Jacobs D., Grigorov M., Kochhar S., Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta 2006 68 5 1683 1691 2-s2.0-31344450644 10.1016/j.talanta. 2005.08.042 (Pubitemid 43144528)
    • (2006) Talanta , vol.68 , Issue.5 , pp. 1683-1691
    • Ramadan, Z.1    Jacobs, D.2    Grigorov, M.3    Kochhar, S.4
  • 11
    • 36448969399 scopus 로고    scopus 로고
    • Prediction of mitochondrial proteins based on genetic algorithm - Partial least squares and support vector machine
    • DOI 10.1007/s00726-006-0465-0
    • Tan F., Feng X., Fang Z., Li M., Guo Y., Jiang L., Prediction of mitochondrial proteins based on genetic algorithm-partial least squares and support vector machine. Amino Acids 2007 33 4 669 675 2-s2.0-36448969399 10.1007/s00726-006-0465-0 (Pubitemid 350165429)
    • (2007) Amino Acids , vol.33 , Issue.4 , pp. 669-675
    • Tan, F.1    Feng, X.2    Fang, Z.3    Li, M.4    Guo, Y.5    Jiang, L.6
  • 13
    • 13844272692 scopus 로고    scopus 로고
    • Selection of variables by genetic algorithms to classify apple beverages by artificial neural networks
    • DOI 10.1080/08839510590901921
    • Gestal M., Gómez-Carracedo M. P., Andrade J. M., Dorado J., Fernández E., Prada D., Pazos A., Selection of variables by genetic algorithms to classify apple beverages by artificial neural networks. Applied Artificial Intelligence 2005 19 2 181 198 2-s2.0-13844272692 10.1080/08839510590901921 (Pubitemid 40245543)
    • (2005) Applied Artificial Intelligence , vol.19 , Issue.2 , pp. 181-198
    • Gestal, M.1    Gomez-Carracedo, M.P.2    Andrade, J.M.3    Dorado, J.4    Fernandez, E.5    Prada, D.6    Pazos, A.7
  • 17
    • 36649025942 scopus 로고    scopus 로고
    • Chemically driven variable selection by focused multimodal genetic algorithms in mid-IR spectra
    • DOI 10.1007/s00216-007-1608-1
    • Gómez-Carracedo M. P., Gestal M., Dorado J., Andrade J. M., Chemically driven variable selection by focused multimodal genetic algorithms in mid-IR spectra. Analytical and Bioanalytical Chemistry 2007 389 7-8 2331 2342 2-s2.0-36649025942 10.1007/s00216-007-1608-1 (Pubitemid 350198050)
    • (2007) Analytical and Bioanalytical Chemistry , vol.389 , Issue.7-8 , pp. 2331-2342
    • Gomez-Carracedo, M.P.1    Gestal, M.2    Dorado, J.3    Andrade, J.M.4
  • 18
    • 33748695973 scopus 로고    scopus 로고
    • Support vector regression with genetic algorithms in forecasting tourism demand
    • DOI 10.1016/j.tourman.2005.12.018, PII S0261517706000033
    • Chen K.-Y., Wang C.-H., Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management 2007 28 1 215 226 2-s2.0-33748695973 10.1016/j.tourman.2005.12.018 (Pubitemid 44391271)
    • (2007) Tourism Management , vol.28 , Issue.1 , pp. 215-226
    • Chen, K.-Y.1    Wang, C.-H.2
  • 19
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
    • DOI 10.1016/j.epsr.2005.01.006, PII S0378779605000702
    • Pai P.-F., Hong W.-C., Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms. Electric Power Systems Research 2005 74 3 417 425 2-s2.0-18144394762 10.1016/j.epsr.2005.01.006 (Pubitemid 40612280)
    • (2005) Electric Power Systems Research , vol.74 , Issue.3 , pp. 417-425
    • Pai, P.-F.1    Hong, W.-C.2
  • 20
    • 78650673337 scopus 로고    scopus 로고
    • Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition
    • 2-s2.0-78650673337
    • Kandaswamy K. K., Pugalenthi G., Möller S., Hartmann E., Kalies K.-U., Suganthan P. N., Martinetz T., Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition. Protein and Peptide Letters 2010 17 12 1473 1479 2-s2.0-78650673337
    • (2010) Protein and Peptide Letters , vol.17 , Issue.12 , pp. 1473-1479
    • Kandaswamy, K.K.1    Pugalenthi, G.2    Möller, S.3    Hartmann, E.4    Kalies, K.-U.5    Suganthan, P.N.6    Martinetz, T.7
  • 22
    • 84871378331 scopus 로고    scopus 로고
    • Nonlinear demodulation and channel coding in EBPSK scheme
    • 180469 10.1100/2012/180469
    • Chen X., Wu L., Nonlinear demodulation and channel coding in EBPSK scheme. The Scientific World Journal 2012 2012 7 180469 10.1100/2012/180469
    • (2012) The Scientific World Journal , vol.2012 , pp. 7
    • Chen, X.1    Wu, L.2
  • 23
    • 84878647556 scopus 로고    scopus 로고
    • Extracting physicochemical features to predict protein secondary structure
    • 347106 10.1155/2013/347106
    • Huang Y. F., Chen S. Y., Extracting physicochemical features to predict protein secondary structure. The Scientific World Journal 2013 2013 8 347106 10.1155/2013/347106
    • (2013) The Scientific World Journal , vol.2013 , pp. 8
    • Huang, Y.F.1    Chen, S.Y.2
  • 26
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and support vector machines for bankruptcy prediction
    • DOI 10.1016/j.eswa.2005.09.070, PII S0957417405002770
    • Min S.-H., Lee J., Han I., Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Systems with Applications 2006 31 3 652 660 2-s2.0-33744925661 10.1016/j.eswa.2005.09.070 (Pubitemid 43841989)
    • (2006) Expert Systems with Applications , vol.31 , Issue.3 , pp. 652-660
    • Min, S.-H.1    Lee, J.2    Han, I.3
  • 27
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • DOI 10.1016/j.eswa.2005.12.008, PII S0957417405003490
    • Wu C.-H., Tzeng G.-H., Goo Y.-J., Fang W.-C., A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications 2007 32 2 397 408 2-s2.0-33751068050 10.1016/j.eswa.2005.12.008 (Pubitemid 44754927)
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 397-408
    • Wu, C.-H.1    Tzeng, G.-H.2    Goo, Y.-J.3    Fang, W.-C.4
  • 28
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • 2-s2.0-0032638628
    • Suykens J. A. K., Vandewalle J., Least squares support vector machine classifiers. Neural Processing Letters 1999 9 3 293 300 2-s2.0-0032638628
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 29
    • 33745768136 scopus 로고    scopus 로고
    • A hybrid GA/SVM approach for gene selection and classification of microarray data
    • DOI 10.1007/11732242-4, Applications of Evolutionary Computing - EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC, Proceedings
    • Huerta E., Duval B., Hao J. K., Rothlauf F., Branke J., Cagnoni S., Costa E., Cotta C., Drechsler R., Lutton E., Machado P., Moore J., Romero J., Smith G., Squillero G., Takagi H., A hybrid GA/SVM approach for gene selection and classification of microarray data. Applications of Evolutionary Computing 2006 Berlin, Germany Springer 34 44 (Pubitemid 44019193)
    • (2006) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , vol.3907 , pp. 34-44
    • Huerta, E.B.1    Duval, B.2    Hao, J.-K.3
  • 30
    • 57149091570 scopus 로고    scopus 로고
    • Academic text classification based on lexical-semantic content
    • 2-s2.0-57149091570
    • Venegas R., Academic text classification based on lexical-semantic content. Revista Signos 2007 40 63 239 271 2-s2.0-57149091570
    • (2007) Revista Signos , vol.40 , Issue.63 , pp. 239-271
    • Venegas, R.1
  • 32
    • 77952327447 scopus 로고    scopus 로고
    • A linear approach to determining an SVM-based fault locator's optimal parameters
    • Pérez L., Mora J., Bedoya J., A linear approach to determining an SVM-based fault locator's optimal parameters. Ingeniería e Investigación 2009 29 76 81
    • (2009) Ingeniería e Investigación , vol.29 , pp. 76-81
    • Pérez, L.1    Mora, J.2    Bedoya, J.3
  • 34
    • 84875740720 scopus 로고    scopus 로고
    • A GA-based model selection for smooth twin parametric-margin support vector machine
    • Wang Z., Shao Y. H., Wu T. R., A GA-based model selection for smooth twin parametric-margin support vector machine. Pattern Recognition 2013 46 2267 2277
    • (2013) Pattern Recognition , vol.46 , pp. 2267-2277
    • Wang, Z.1    Shao, Y.H.2    Wu, T.R.3
  • 37
    • 84875645478 scopus 로고    scopus 로고
    • A genetic algorithm-support vector machine method with parameter optimization for selecting the tag SNPs
    • Ilhan T., Tezel G., A genetic algorithm-support vector machine method with parameter optimization for selecting the tag SNPs. Journal of Biomedical Informatics 2013 46 328 340
    • (2013) Journal of Biomedical Informatics , vol.46 , pp. 328-340
    • Ilhan, T.1    Tezel, G.2
  • 38
    • 84880904499 scopus 로고    scopus 로고
    • Application of particle swarm optimization algorithm in the heating system planning problem
    • 718345
    • Ma R. J., Yu N. Y., Hu J. Y., Application of particle swarm optimization algorithm in the heating system planning problem. The Scientific World Journal 2013 2013 11 718345
    • (2013) The Scientific World Journal , vol.2013 , pp. 11
    • Ma, R.J.1    Yu, N.Y.2    Hu, J.Y.3
  • 39
    • 84885597453 scopus 로고    scopus 로고
    • An MR brain images classifier system via particle swarm optimization and kernel support vector machine
    • 130134 10.1155/2013/130134
    • Zhang Y., Wang S., Ji G., Dong Z., An MR brain images classifier system via particle swarm optimization and kernel support vector machine. The Scientific World Journal 2013 2013 9 130134 10.1155/2013/130134
    • (2013) The Scientific World Journal , vol.2013 , pp. 9
    • Zhang, Y.1    Wang, S.2    Ji, G.3    Dong, Z.4
  • 40
    • 84872108571 scopus 로고    scopus 로고
    • A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being
    • 379913
    • Ocak H., A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. Journal of Medical Systems 2013 37, aricle 9913
    • (2013) Journal of Medical Systems
    • Ocak, H.1
  • 41
    • 84883204011 scopus 로고    scopus 로고
    • Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification
    • 419187 10.1155/2013/419187
    • Uzer M. S., Yilmaz N., Inan O., Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification. The Scientific World Journal 2013 2013 10 419187 10.1155/2013/419187
    • (2013) The Scientific World Journal , vol.2013 , pp. 10
    • Uzer, M.S.1    Yilmaz, N.2    Inan, O.3
  • 42
    • 84874531065 scopus 로고    scopus 로고
    • A robust hybrid approach based on estimation of distribution algorithm and support vector machine for hunting candidate disease genes
    • 393570 10.1155/2013/393570
    • Li L., Chen H., Liu C., Wang F., Zhang F., Bai L., Chen Y., Peng L., A robust hybrid approach based on estimation of distribution algorithm and support vector machine for hunting candidate disease genes. The Scientific World Journal 2013 2013 7 393570 10.1155/2013/393570
    • (2013) The Scientific World Journal , vol.2013 , pp. 7
    • Li, L.1    Chen, H.2    Liu, C.3    Wang, F.4    Zhang, F.5    Bai, L.6    Chen, Y.7    Peng, L.8
  • 43
    • 84871824961 scopus 로고    scopus 로고
    • Gene expression profiles for predicting metastasis in breast cancer: A cross-study comparison of classification methods
    • 380495 10.1100/2012/380495
    • Burton M., Thomassen M., Tan Q., Kruse T. A., Gene expression profiles for predicting metastasis in breast cancer: a cross-study comparison of classification methods. The Scientific World Journal 2012 2012 11 380495 10.1100/2012/380495
    • (2012) The Scientific World Journal , vol.2012 , pp. 11
    • Burton, M.1    Thomassen, M.2    Tan, Q.3    Kruse, T.A.4
  • 46
    • 0000012317 scopus 로고    scopus 로고
    • Toward optimal feature selection
    • Koller D., Sahami M., Toward optimal feature selection. Citeseer 1996 284 292
    • (1996) Citeseer , pp. 284-292
    • Koller, D.1    Sahami, M.2
  • 47
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi R., John G. H., Wrappers for feature subset selection. Artificial Intelligence 1997 97 1-2 273 324 2-s2.0-0031381525 (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 52
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • 2-s2.0-0024895461
    • Siedlecki W., Sklansky J., A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters 1989 10 5 335 347 2-s2.0-0024895461
    • (1989) Pattern Recognition Letters , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 53
    • 0347721633 scopus 로고    scopus 로고
    • A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers
    • 2-s2.0-0347721633
    • Kudo M., Sklansky J., A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers. Kybernetika 1998 34 4 429 434 2-s2.0-0347721633
    • (1998) Kybernetika , vol.34 , Issue.4 , pp. 429-434
    • Kudo, M.1    Sklansky, J.2
  • 55
    • 0002988210 scopus 로고
    • Computing machinery and intelligence
    • Turing A. M., Computing machinery and intelligence. Mind 1950 59 433 460
    • (1950) Mind , vol.59 , pp. 433-460
    • Turing, A.M.1
  • 56
    • 0001201757 scopus 로고
    • Some studies in machine learning using the game of checkers
    • Samuel A., Some studies in machine learning using the game of checkers. IBM Journal of Research and Development 1967 11 601 617
    • (1967) IBM Journal of Research and Development , vol.11 , pp. 601-617
    • Samuel, A.1
  • 58
    • 84866883709 scopus 로고
    • A comparative analysis of selection schemes used in genetic algorithms
    • Goldberg D. E., Deb K., A comparative analysis of selection schemes used in genetic algorithms. Urbana 1991 51 61801 62996
    • (1991) Urbana , vol.51 , pp. 61801-62996
    • Goldberg, D.E.1    Deb, K.2
  • 59
    • 3042880247 scopus 로고    scopus 로고
    • in Proceedings of the 2nd International Conference on Genetic Algorithms on Genetic Algorithms and their Application 1987 L. Erlbaum Associates
    • Goldberg D. E., Richardson J., Genetic algorithms with sharing for multimodal function optimization. in Proceedings of the 2nd International Conference on Genetic Algorithms on Genetic Algorithms and their Application 1987 L. Erlbaum Associates 41 49
    • Genetic Algorithms with Sharing for Multimodal Function Optimization , pp. 41-49
    • Goldberg, D.E.1    Richardson, J.2
  • 60
    • 0033185714 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms: Problem difficulties and construction of test problems
    • 2-s2.0-0033185714
    • Deb K., Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evolutionary computation 1999 7 3 205 230 2-s2.0-0033185714
    • (1999) Evolutionary Computation , vol.7 , Issue.3 , pp. 205-230
    • Deb, K.1
  • 61
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • Chapelle O., Vapnik V., Bousquet O., Mukherjee S., Choosing multiple parameters for support vector machines. Machine Learning 2002 46 1-3 131 159 2-s2.0-0036161011 10.1023/A:1012450327387 (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 63
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency in the empirical risk minimization method
    • Vapnik V., Chervonenkis A., The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis 1991 1 283 305
    • (1991) Pattern Recognition and Image Analysis , vol.1 , pp. 283-305
    • Vapnik, V.1    Chervonenkis, A.2
  • 64
    • 0003527474 scopus 로고    scopus 로고
    • Mechanical Engineering Department, Massachusetts Institute of Technology, 1996
    • Wall M., GAlib: a C++ library of genetic algorithm components. Mechanical Engineering Department, Massachusetts Institute of Technology, 1996, http://lancet.mit.edu/ga/
    • GAlib: A C++ Library of Genetic Algorithm Components
    • Wall, M.1
  • 66
    • 8844278616 scopus 로고    scopus 로고
    • Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification
    • DOI 10.1109/TGRS.2003.810924
    • Maulik U., Bandyopadhyay S., Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Transactions on Geoscience and Remote Sensing 2003 41 5 1075 1081 2-s2.0-8844278616 10.1109/TGRS.2003.810924 (Pubitemid 351466569)
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.5 PART 1 , pp. 1075-1081
    • Maulik, U.1    Bandyopadhyay, S.2
  • 68
    • 4544241413 scopus 로고    scopus 로고
    • Classification of apple beverages using artificial neural networks with previous variable selection
    • DOI 10.1016/j.aca.2004.02.030, PII S000326700400220X
    • Gestal M., Gómez-Carracedo M. P., Andrade J. M., Dorado J., Fernández E., Prada D., Pazos A., Classification of apple beverages using artificial neural networks with previous variable selection. Analytica Chimica Acta 2004 524 1-2 225 234 2-s2.0-4544241413 10.1016/j.aca.2004.02.030 (Pubitemid 39244046)
    • (2004) Analytica Chimica Acta , vol.524 , Issue.1-2 SPEC. ISS. , pp. 225-234
    • Gestal, M.1    Gomez-Carracedo, M.P.2    Andrade, J.M.3    Dorado, J.4    Fernandez, E.5    Prada, D.6    Pazos, A.7
  • 71
    • 34248530006 scopus 로고    scopus 로고
    • Linking chemical knowledge and genetic algorithms using two populations and focused multimodal search
    • DOI 10.1016/j.chemolab.2006.12.002, PII S0169743907000020
    • Gómez-Carracedo M. P., Gestal M., Dorado J., Andrade J. M., Linking chemical knowledge and genetic algorithms using two populations and focused multimodal search. Chemometrics and Intelligent Laboratory Systems 2007 87 2 173 184 2-s2.0-34248530006 10.1016/j.chemolab.2006.12.002 (Pubitemid 46755416)
    • (2007) Chemometrics and Intelligent Laboratory Systems , vol.87 , Issue.2 , pp. 173-184
    • Gomez-Carracedo, M.P.1    Gestal, M.2    Dorado, J.3    Andrade, J.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.