메뉴 건너뛰기




Volumn 29, Issue 7, 2013, Pages 1736-1741

GPU enhanced parallel computing for large scale data clustering

Author keywords

CUDA; Data clustering; GPU; Swarm intelligence

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; COMPUTER GRAPHICS; COMPUTER GRAPHICS EQUIPMENT; PROBLEM SOLVING; PROGRAM PROCESSORS; SWARM INTELLIGENCE;

EID: 84893775225     PISSN: 0167739X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.future.2012.07.009     Document Type: Article
Times cited : (19)

References (12)
  • 5
    • 0021202650 scopus 로고
    • K-MEANS-TYPE ALGORITHMS: A GENERALIZED CONVERGENCE THEOREM AND CHARACTERIZATION OF LOCAL OPTIMALITY.
    • S.Z. Selim, M.A. Ismail, K-means-type algorithms: a generalized convergence theorem and characterization of local optimality, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6 (1984) 81-87. (Pubitemid 14529037)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.1 , pp. 81-87
    • Selim, S.Z.1    Ismail, M.A.2
  • 6
    • 79955071068 scopus 로고    scopus 로고
    • A parallel implementation of K-means clustering on GPUs
    • Las Vegas, Nevada, July
    • R. Farivar, D. Rebolledo, E. Chan, R. Campbell, A parallel implementation of K-means clustering on GPUs, in: WorldComp 2008, Las Vegas, Nevada, July 2008.
    • (2008) WorldComp 2008
    • Farivar, R.1    Rebolledo, D.2    Chan, E.3    Campbell, R.4
  • 7
    • 0023379184 scopus 로고
    • Flocks, herds, and schools: A distributed behavioral model
    • C.W. Reynolds, Flocks, herds, and schools: a distributed behavioral model, Computer Graphics (ACM) 21 (1987) 25-34.
    • (1987) Computer Graphics (ACM) , vol.21 , pp. 25-34
    • Reynolds, C.W.1
  • 8
    • 0000582788 scopus 로고
    • An algorithm for suffix stripping
    • Morgan Kaufmann Publishers, Inc., San Francisco, CA
    • M.F. Porter, An algorithm for suffix stripping, in: Readings in Information Retrieval, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1980, pp. 313-316.
    • (1980) Readings in Information Retrieval , pp. 313-316
    • Porter, M.F.1
  • 9
    • 34548062522 scopus 로고    scopus 로고
    • TF-ICF: A new term weighting scheme for clustering dynamic data streams
    • J. Reed, et al. TF-ICF: a new term weighting scheme for clustering dynamic data streams, in: Proc. Machine Learning and Applications, ICMLA'06, 2006, pp. 258-263.
    • (2006) Proc. Machine Learning and Applications, ICMLA'06 , pp. 258-263
    • Reed, J.1
  • 12
    • 84893719446 scopus 로고    scopus 로고
    • Ten ways to fool the masses when giving performance results on GPUs
    • December
    • S. Pakin, Ten ways to fool the masses when giving performance results on GPUs, in: HPCwire, December, 2011.
    • (2011) HPCwire
    • Pakin, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.