-
2
-
-
0001184615
-
Harmonic analysis of neural networks
-
Candès EJ. Harmonic analysis of neural networks. Appl Comput Harmon Anal. 1999;6:197-218. doi: 10.1006/acha.1998.0248
-
(1999)
Appl Comput Harmon Anal
, vol.6
, pp. 197-218
-
-
Candès, E.J.1
-
4
-
-
84962811385
-
Ridgelet transform on tempered distributions
-
Roopkumar R. Ridgelet transform on tempered distributions. Comment Math Univ Carolin. 2010;51:431-439.
-
(2010)
Comment Math Univ Carolin
, vol.51
, pp. 431-439
-
-
Roopkumar, R.1
-
5
-
-
84857602353
-
Extended Ridgelet transform on distributions and Boehmians
-
Roopkumar R. Extended Ridgelet transform on distributions and Boehmians. Asian-Eur J Math. 2011;4:507-521. doi: 10.1142/S1793557111000423
-
(2011)
Asian-Eur J Math
, vol.4
, pp. 507-521
-
-
Roopkumar, R.1
-
6
-
-
0004281154
-
-
New York, New York,: The Clarendon Press, Oxford University Press
-
Holschneider M. Wavelets. An analysis tool. New York: The Clarendon Press, Oxford University Press; 1995.
-
(1995)
Wavelets. An analysis tool
-
-
Holschneider, M.1
-
7
-
-
0004070324
-
-
2nd ed., Boston, MA, Boston, MA,: Birkhäuser Boston, Inc
-
Helgason S. The Radon transform. 2nd ed. Boston, MA: Birkhäuser Boston, Inc.; 1999.
-
(1999)
The Radon transform
-
-
Helgason, S.1
-
8
-
-
0040795235
-
Continuity of the Radon transform and its inverse on Euclidean spaces
-
Hertle A. Continuity of the Radon transform and its inverse on Euclidean spaces. Math Z. 1983;184:165-192. doi: 10.1007/BF01252856
-
(1983)
Math Z
, vol.184
, pp. 165-192
-
-
Hertle, A.1
-
9
-
-
0003659120
-
-
Providence, RI, Providence, RI,: American Mathematical Society
-
Meyer Y. Wavelets, vibrations and scalings. Providence, RI: American Mathematical Society; 1998.
-
(1998)
Wavelets, vibrations and scalings
-
-
Meyer, Y.1
-
10
-
-
79251597427
-
Tauberian theorems for the wavelet transform
-
Vindas J, Pilipović S, Rakić D. Tauberian theorems for the wavelet transform. J Fourier Anal Appl. 2011;17:65-95. doi: 10.1007/s00041-010-9146-1
-
(2011)
J Fourier Anal Appl
, vol.17
, pp. 65-95
-
-
Vindas, J.1
Pilipović, S.2
Rakić, D.3
-
11
-
-
84893765942
-
Multidimensional Tauberian theorems for vector-valued distributions
-
Pilipović S, Vindas J. Multidimensional Tauberian theorems for vector-valued distributions. Publ Inst Math (Beograd), in press.
-
Publ Inst Math (Beograd
-
-
Pilipović, S.1
Vindas, J.2
-
12
-
-
77953357155
-
Wavelet expansions and asymptotic behavior of distributions
-
Saneva K, Vindas J. Wavelet expansions and asymptotic behavior of distributions. J Math Anal Appl. 2010;370: 543-554. doi: 10.1016/j.jmaa.2010.04.041
-
(2010)
J Math Anal Appl
, vol.370
, pp. 543-554
-
-
Saneva, K.1
Vindas, J.2
-
13
-
-
84893781565
-
Quasiasymptotics in exponential distributions by wavelet analysis
-
Sohn BK. Quasiasymptotics in exponential distributions by wavelet analysis. Nihonkai Math J. 2012;23:21-42.
-
(2012)
Nihonkai Math J
, vol.23
, pp. 21-42
-
-
Sohn, B.K.1
-
14
-
-
48249086370
-
Sur la fixation des variables dans une distribution
-
Łojasiewicz S. Sur la fixation des variables dans une distribution. Studia Math 1958;17:1-64.
-
(1958)
Studia Math
, vol.17
, pp. 1-64
-
-
Łojasiewicz, S.1
-
18
-
-
84957519730
-
The Radon transform on euclidean space
-
Ludwig D. The Radon transform on euclidean space. Comm Pure Appl Math. 1966;19:49-81. doi: 10.1002/cpa.3160190105
-
(1966)
Comm Pure Appl Math
, vol.19
, pp. 49-81
-
-
Ludwig, D.1
-
19
-
-
0040200874
-
On the Range of Radon transform and its dual
-
Hertle A. On the Range of Radon transform and its dual. Math Ann. 1984;267:91-99. doi: 10.1007/BF01458472
-
(1984)
Math Ann
, vol.267
, pp. 91-99
-
-
Hertle, A.1
-
20
-
-
84892303979
-
The Radon transform on distributions
-
Ramm AG. The Radon transform on distributions. Proc Japan Acad Ser A Math Sci. 1995;71:202-206. doi: 10.3792/pjaa.71.202
-
(1995)
Proc Japan Acad Ser A Math Sci
, vol.71
, pp. 202-206
-
-
Ramm, A.G.1
-
21
-
-
33947661495
-
Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones
-
Drozhzhinov YN, Zav'yalov BI. Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones. Izv Math 2006;70:1117-1164. doi: 10.1070/IM2006v070n06ABEH002341
-
(2006)
Izv Math
, vol.70
, pp. 1117-1164
-
-
Drozhzhinov, Y.N.1
Zav'yalov, B.I.2
-
22
-
-
84864936343
-
New classes of weighted Hölder-Zygmund spaces and the wavelet transform
-
Article ID 815475, (2012
-
Pilipović S, Rakić D, Vindas J. New classes of weighted Hölder-Zygmund spaces and the wavelet transform. J Funct Spaces Appl. 2012; Article ID 815475, (2012): 18 pp.
-
(2012)
J Funct Spaces Appl
, pp. 18
-
-
Pilipović, S.1
Rakić, D.2
Vindas, J.3
-
23
-
-
79956351676
-
Sur la définition et la structure des distributions vectorielles
-
Sebastião e Silva J. Sur la définition et la structure des distributions vectorielles. Portugal Math. 1960;19:1-80.
-
(1960)
Portugal Math
, vol.19
, pp. 1-80
-
-
Sebastião e Silva, J.1
|