메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 224-231

Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure

Author keywords

Extreme Learning Machine; Incremental Support Vector Data Description; Multi scale principal component analysis; Online fault diagnosis

Indexed keywords

DISCRIMINATING ABILITIES; ELASTIC STRUCTURES; EXTREME LEARNING MACHINE; MECHANICAL EQUIPMENT; MULTI-SCALE PRINCIPAL COMPONENT ANALYSIS; ON-LINE FAULT DIAGNOSIS; RECOGNITION ALGORITHM; SUPPORT VECTOR DATA DESCRIPTION;

EID: 84893686051     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.01.061     Document Type: Article
Times cited : (80)

References (24)
  • 1
    • 66149156851 scopus 로고    scopus 로고
    • Fault Diagnosis Method Based on Modified Random Forests
    • (in Chinese)
    • Jin-fa Zhuang, Jian Luo, Yan-qing Peng, et al. Fault Diagnosis Method Based on Modified Random Forests. Comput. Integr. Manuf. Syst. 2009, 15(4):777-785. (in Chinese).
    • (2009) Comput. Integr. Manuf. Syst. , vol.15 , Issue.4 , pp. 777-785
    • Jin-fa, Z.1    Jian, L.2    Yan-qing, P.3
  • 2
    • 0037443770 scopus 로고    scopus 로고
    • A review of Process fault detection and diagnosis Part I: quantitative model-based methods
    • Venkatasubramanian V., Rengaswamy R., Yin K., et al. A review of Process fault detection and diagnosis Part I: quantitative model-based methods. Comput. Chem. Eng. 2003, 27(3):293-311.
    • (2003) Comput. Chem. Eng. , vol.27 , Issue.3 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3
  • 3
    • 0037443771 scopus 로고    scopus 로고
    • A review of Process fault detection and diagnosis Part II: quantitative model and search strategies
    • Venkatasubramanian V., Rengaswamy R., Kavuri S.N. A review of Process fault detection and diagnosis Part II: quantitative model and search strategies. Comput. Chem. Eng. 2003, 27(3):313-326.
    • (2003) Comput. Chem. Eng. , vol.27 , Issue.3 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3
  • 4
    • 0037443803 scopus 로고    scopus 로고
    • A review of Process fault detection and diagnosis Part III: Process history based methods
    • Venkatasubramanian V., Rengaswamy R., Kavuri S.N., et al. A review of Process fault detection and diagnosis Part III: Process history based methods. Comput. Chem. Eng. 2003, 27(3):327-346.
    • (2003) Comput. Chem. Eng. , vol.27 , Issue.3 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3
  • 5
    • 23444445207 scopus 로고    scopus 로고
    • On-line fault diagnosis in industrial processes using variable moving window and hidden Markov model
    • Shaoyuan Zhou, Lei Xie, Shuqing Wang On-line fault diagnosis in industrial processes using variable moving window and hidden Markov model. Chin. J. Chem. Eng. 2005, 13(3):388-395.
    • (2005) Chin. J. Chem. Eng. , vol.13 , Issue.3 , pp. 388-395
    • Shaoyuan, Z.1    Lei, X.2    Shuqing, W.3
  • 6
    • 33846031976 scopus 로고    scopus 로고
    • On-line fault diagnosis Using SVM-based dynamic MPLS for batch process
    • Li Yunfeng, Wang Zhifeng, Yuan Jingqi On-line fault diagnosis Using SVM-based dynamic MPLS for batch process. Chin. J. Chem. Eng. 2006, 14(6):754-758.
    • (2006) Chin. J. Chem. Eng. , vol.14 , Issue.6 , pp. 754-758
    • Li, Y.1    Wang, Z.2    Yuan, J.3
  • 7
    • 79960753941 scopus 로고    scopus 로고
    • Online SVM learning: from classification to data description and back
    • Proceedings of IEEE International Workshop on Neural Networks for Signal Processing, Berlin: IEEE
    • D.M.J. Tax, P. Laskov, Online SVM learning: from classification to data description and back, in: Proceedings of IEEE International Workshop on Neural Networks for Signal Processing, Berlin: IEEE, 2003, pp. 499-508.
    • (2003) , pp. 499-508
    • Tax, D.M.J.1    Laskov, P.2
  • 8
    • 0942266514 scopus 로고    scopus 로고
    • Support Vector Data Description
    • Tax D., Duin R. Support Vector Data Description. Mach. Learn. 2004, 54(1):45-66.
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 9
    • 84893713002 scopus 로고    scopus 로고
    • An incremental support vector data description method for online learning
    • (in Chinese)
    • Guo-yu Feng, Huai-tie Xiao, Qiang Fu, et al. An incremental support vector data description method for online learning. Signal Process. 2012, 28(2):186-192. (in Chinese).
    • (2012) Signal Process. , vol.28 , Issue.2 , pp. 186-192
    • Guo-yu, F.1    Huai-tie, X.2    Qiang, F.3
  • 10
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Guang-Bin, H.1    Qin-Yu, Z.2    Chee-Kheong, S.3
  • 11
    • 77952881939 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for fault classification in series compensated transmission line
    • Malathi V., Marimuthu N.S., Baskar S. A comprehensive evaluation of multicategory classification methods for fault classification in series compensated transmission line. Neural Comput. Appl. 2010, 19(4):595-600.
    • (2010) Neural Comput. Appl. , vol.19 , Issue.4 , pp. 595-600
    • Malathi, V.1    Marimuthu, N.S.2    Baskar, S.3
  • 12
    • 78049398296 scopus 로고    scopus 로고
    • Fault prognosis of mechanical components using on-line learning neural networks
    • Martinez-Rego David, Fontenla-Romero Oscar, Perez-Sanchez Beatriz, et al. Fault prognosis of mechanical components using on-line learning neural networks. Lect. Notes. Comput. Sci. 2010, 6352(1):60-66.
    • (2010) Lect. Notes. Comput. Sci. , vol.6352 , Issue.1 , pp. 60-66
    • Martinez-Rego, D.1    Fontenla-Romero, O.2    Perez-Sanchez, B.3
  • 13
    • 79953819355 scopus 로고    scopus 로고
    • A computer aided diagnosis system for lung cancer detection using machine learning technique
    • Gomathi M., Thangaraj P. A computer aided diagnosis system for lung cancer detection using machine learning technique. Eur. J. Sci. Res. 2011, 51(2):260-275.
    • (2011) Eur. J. Sci. Res. , vol.51 , Issue.2 , pp. 260-275
    • Gomathi, M.1    Thangaraj, P.2
  • 14
    • 46249100582 scopus 로고    scopus 로고
    • Multi-stage extreme learning machine for fault diagnosis on hydraulic tube tester
    • Hu Xue-fa, Zhao Zhen, Wang Shu, et al. Multi-stage extreme learning machine for fault diagnosis on hydraulic tube tester. Neural Comput. Appl. 2008, 17(4):399-403.
    • (2008) Neural Comput. Appl. , vol.17 , Issue.4 , pp. 399-403
    • Hu, X.-F.1    Zhao, Z.2    Wang, S.3
  • 15
    • 84893712174 scopus 로고    scopus 로고
    • Dynamic extreme learning machine: a learning algorithm for neural network with elastic output structure
    • Proceedings of the International Symposium on Intelligent Information Systems and Applications
    • Taiqing Wang, Shengjin Wang, Hongxin Zhang, Dynamic extreme learning machine: a learning algorithm for neural network with elastic output structure, in: Proceedings of the International Symposium on Intelligent Information Systems and Applications, 2009, pp. 271-275.
    • (2009) , pp. 271-275
    • Wang, T.1    Wang, S.2    Zhang, H.3
  • 16
    • 84893709857 scopus 로고    scopus 로고
    • Incremental Learning with Support Vector Machines, in: Processing of the Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence, CA, United States, November 29-December 2, 1999
    • N. Syed, H. Liu, K. Sung, Incremental Learning with Support Vector Machines, in: Processing of the Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence, CA, United States, November 29-December 2, 1999, pp. 876-892.
    • Syed, N.1    Liu, H.2    Sung, K.3
  • 17
    • 84893699444 scopus 로고    scopus 로고
    • T Poggio Incremental and decremental support vector machine learning, in: Proceedings of the 14th Annual Neural Information Processing Systems Conference (NIPS), DENVER, CO, November 27-December 2, 2000
    • G. CauwenBerghs, T. Poggio Incremental and decremental support vector machine learning, in: Proceedings of the 14th Annual Neural Information Processing Systems Conference (NIPS), DENVER, CO, November 27-December 2, 2000, pp. 409-415.
    • CauwenBerghs, G.1
  • 18
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: analysis, implementation and application
    • Laskov P., CauwenBerghs G., Kruger S. Incremental support vector learning: analysis, implementation and application. J. Mach. Learn. 2006, 7:1909-1936.
    • (2006) J. Mach. Learn. , vol.7 , pp. 1909-1936
    • Laskov, P.1    CauwenBerghs, G.2    Kruger, S.3
  • 19
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Baltimore, MD
    • Golub G.H., Loan C.F.V. Matrix Computations 1996, Johns Hopkins University Press, Baltimore, MD. third ed.
    • (1996) Matrix Computations
    • Golub, G.H.1    Loan, C.F.V.2
  • 20
    • 77953544300 scopus 로고    scopus 로고
    • Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification
    • Tang Xiaoliang, Han Min Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification. Knowl. Inf. Syst. 2010, 23(3):345-372.
    • (2010) Knowl. Inf. Syst. , vol.23 , Issue.3 , pp. 345-372
    • Tang, X.1    Han, M.2
  • 21
    • 67650463106 scopus 로고    scopus 로고
    • Regularized extreme learning machine, in: Proceedings of the IEEE Symposium on computational Intelligence; and Data Mining (CIDM2009), TN, USA, March 30-April 2, 2009
    • W. Deng, Q. Zheng, L. Chen, Regularized extreme learning machine, in: Proceedings of the IEEE Symposium on computational Intelligence; and Data Mining (CIDM2009), TN, USA, March 30-April 2, 2009, pp. 389-395.
    • Deng, W.1    Zheng, Q.2    Chen, L.3
  • 22
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bhavik R.Bakshi Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 1998, 44(7):1596-1610.
    • (1998) AIChE J. , vol.44 , Issue.7 , pp. 1596-1610
    • Bhavik, R.B.1
  • 24
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 1997, 30(7):1145-1159.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.