메뉴 건너뛰기




Volumn 219, Issue 20, 2013, Pages 10225-10230

Solving a system of linear Volterra integral equations using the new reproducing kernel method

Author keywords

Approximate solutions; Kind; Reproducing kernel function; Reproducing kernel theory; Volterra integral equations of the second

Indexed keywords

NUMERICAL METHODS;

EID: 84893685000     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2013.03.123     Document Type: Article
Times cited : (62)

References (19)
  • 1
    • 0033353533 scopus 로고    scopus 로고
    • Simple Taylor-series expansion method for a class of second kind integral equations
    • DOI 10.1016/S0377-0427(99)00192-2
    • Y. Ren, B. Zhang, H. Qiao, A simple Taylor-series expansion method for a class of second kind integral equations, J. Comput. Appl. Math. 110 (1999) 15-24. (Pubitemid 30518373)
    • (1999) Journal of Computational and Applied Mathematics , vol.110 , Issue.1 , pp. 15-24
    • Ren, Y.1    Zhang, B.2    Qiao, H.3
  • 2
    • 0345867026 scopus 로고    scopus 로고
    • Numerical solution of linear fredholm integral equation by using hybrid taylor and block-pulse functions
    • K. Maleknejad, Y. Mahmoudi, Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block-pulse functions, Appl. Math. Comput. 149 (2004) 799-806.
    • (2004) Appl. Math. Comput. , vol.149 , pp. 799-806
    • Maleknejad, K.1    Mahmoudi, Y.2
  • 3
    • 0000992795 scopus 로고    scopus 로고
    • The approximate solution of high-order linear volterra-fredholm integro-differential equations in terms of taylor polynomials
    • S. Yalcinbas, M. Sezer, The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput. 112 (2000) 291-308.
    • (2000) Appl. Math. Comput. , vol.112 , pp. 291-308
    • Yalcinbas, S.1    Sezer, M.2
  • 4
    • 0037089760 scopus 로고    scopus 로고
    • Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations
    • DOI 10.1016/S0096-3003(00)00165-X, PII S009630030000165X
    • S. Yalcinbas, Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations, Appl. Math. Comput. 127 (2002) 195-206. (Pubitemid 34116048)
    • (2002) Applied Mathematics and Computation , vol.127 , Issue.2-3 , pp. 195-206
    • Yalcinbas, S.1
  • 5
    • 0008534451 scopus 로고    scopus 로고
    • An algorithm for solving a nonlinear integro-differential equation
    • E. Deeba, S.A. Khuri, S. Xie, An algorithm for solving a nonlinear integro-differential equation, Appl. Math. Comput. 115 (2000) 123-131.
    • (2000) Appl. Math. Comput. , vol.115 , pp. 123-131
    • Deeba, E.1    Khuri, S.A.2    Xie, S.3
  • 6
    • 44649199274 scopus 로고    scopus 로고
    • Numerical solution of linear volterra integral equations system of the second kind
    • A. Tahmasbi, O.S. Fard, Numerical solution of linear Volterra integral equations system of the second kind, Appl. Math. Comput. 201 (2008) 547-552.
    • (2008) Appl. Math. Comput. , vol.201 , pp. 547-552
    • Tahmasbi, A.1    Fard, O.S.2
  • 7
    • 0141748141 scopus 로고    scopus 로고
    • On the decomposition method for system of linear equations and system of linear volterra integral equations
    • E. Babolian, J. Biazar, A.R. Vahidi, On the decomposition method for system of linear equations and system of linear Volterra integral equations, Appl. Math. Comput. 147 (2004) 19-27.
    • (2004) Appl. Math. Comput. , vol.147 , pp. 19-27
    • Babolian, E.1    Biazar, J.2    Vahidi, A.R.3
  • 8
    • 42949104677 scopus 로고    scopus 로고
    • Agadjanov, A homotopy perturbation algorithm to solve a system of fredholm-volterra type integral equations
    • Agadjanov, A homotopy perturbation algorithm to solve a system of Fredholm-Volterra type integral equations, Math. Comput. Model. 47 (2008) 1099-1107.
    • (2008) Math. Comput. Model. , vol.47 , pp. 1099-1107
  • 9
    • 62749090990 scopus 로고    scopus 로고
    • He's homotopy perturbation method for solving systems of volterra integral equations of the second kind
    • J. Biazar, H. Ghazvini, He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind, Chaos Solitons Fract. 39 (2009)770-777.
    • (2009) Chaos Solitons Fract. , vol.39 , pp. 770-777
    • Biazar, J.1    Ghazvini, H.2
  • 10
    • 70349762692 scopus 로고    scopus 로고
    • Block by block method for the systems of nonlinear volterra integral equations
    • R. Katani, S. Shahmorad, Block by block method for the systems of nonlinear Volterra integral equations, Appl. Math. Model. 34 (2010) 400-406.
    • (2010) Appl. Math. Model. , vol.34 , pp. 400-406
    • Katani, R.1    Shahmorad, S.2
  • 11
    • 34247548298 scopus 로고    scopus 로고
    • Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method
    • DOI 10.1016/j.amc.2006.09.012, PII S0096300306012513
    • M. Rabbani, K. Maleknejad, N. Aghazadeh, Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method, Appl. Math. Comput. 187 (2007) 1143-1146. (Pubitemid 46656286)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1143-1146
    • Rabbani, M.1    Maleknejad, K.2    Aghazadeh, N.3
  • 12
    • 2642534223 scopus 로고
    • On the best operator of interpolation in w\ [a
    • M.G. Cui, Z.X. Deng, On the best operator of interpolation in w\ [a, b]. Math. Numer. Sinica 2 (1986) 209-216.
    • (1986) B]. Math. Numer. Sinica , vol.2 , pp. 209-216
    • Cui, M.G.1    Deng, Z.X.2
  • 13
    • 34248231712 scopus 로고    scopus 로고
    • A computational method for solving one-dimensional variable-coefficient burgers equation
    • M.G. Cui, F.Z. Geng, A computational method for solving one-dimensional variable-coefficient Burgers equation, Appl. Math. Comput. 188 (2007) 1389-1401.
    • (2007) Appl. Math. Comput. , vol.188 , pp. 1389-1401
    • Cui, M.G.1    Geng, F.Z.2
  • 14
    • 40849132839 scopus 로고    scopus 로고
    • A computational method for solving third-order singularly perturbed boundary-value problems
    • M.G. Cui, F.Z. Geng, A computational method for solving third-order singularly perturbed boundary-value problems, Appl. Math. Comput. 198 (2008) 896-903.
    • (2008) Appl. Math. Comput. , vol.198 , pp. 896-903
    • Cui, M.G.1    Geng, F.Z.2
  • 15
    • 34047244924 scopus 로고    scopus 로고
    • The exact solution of nonlinear age-structured population model
    • DOI 10.1016/j.nonrwa.2006.06.004, PII S1468121806000769
    • M.G. Cui, Z. Chen, The exact solution of nonlinear age-structured population model, Nonlinear Anal. 8 (2007) 1096-1112. (Pubitemid 46551823)
    • (2007) Nonlinear Analysis: Real World Applications , vol.8 , Issue.4 , pp. 1096-1112
    • Cui, M.1    Chen, Z.2
  • 16
    • 43649091637 scopus 로고    scopus 로고
    • Solving singular nonlinear two-point boundary value problems in the reproducing kernel space
    • F.Z. Geng, M.G. Cui, Solving singular nonlinear two-point boundary value problems in the reproducing kernel space, J. Korean Math. Soc. 45 (3) (2008) 631-644.
    • (2008) J. Korean Math. Soc. , vol.45 , Issue.3 , pp. 631-644
    • Geng, F.Z.1    Cui, M.G.2
  • 17
    • 24944466835 scopus 로고
    • The representation of the solution of a kind operator equation au = f
    • M.G. Cui, Y.B. Yan, The representation of the solution of a kind operator equation au = f, J. Chin. Univ.: Numer. Math. A 3 (1995) 82-86.
    • (1995) J. Chin. Univ.: Numer. Math. A , vol.3 , pp. 82-86
    • Cui, M.G.1    Yan, Y.B.2
  • 18
    • 43449102464 scopus 로고    scopus 로고
    • The exact solution of a linear integral equation with weakly singular kernel
    • Z. Chen, Y.Z. Lin, The exact solution of a linear integral equation with weakly singular kernel, J. Math. Anal. Appl. 344 (2008) 726-734.
    • (2008) J. Math. Anal. Appl. , vol.344 , pp. 726-734
    • Chen, Z.1    Lin, Y.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.