메뉴 건너뛰기




Volumn , Issue , 2004, Pages

Boundary value problems and inequalities in contact mechanics

Author keywords

Adhesion; Boundary integral equations; Contact problems; Finite element method; Variational approach; Variational inequality; Wear

Indexed keywords

AXIALLY SYMMETRIC PROBLEMS; BOUNDARY INTEGRAL EQUATION METHOD; BOUNDARY INTEGRAL EQUATIONS METHODS; CONTACT PROBLEM; DYNAMIC CONTACT PROBLEM; QUASI VARIATIONAL INEQUALITIES; VARIATIONAL APPROACHES; VARIATIONAL INEQUALITIES;

EID: 84893435107     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (14)
  • 3
    • 84893441666 scopus 로고
    • The work of stampacchia in variational inequalities
    • J.-L. Lions. The work of Stampacchia in variational inequalities. Boll. Unione mat. Ital., A-15, 736-756, 1978.
    • (1978) Boll. Unione Mat. Ital. , vol.A-15 , pp. 736-756
    • Lions, J.-L.1
  • 9
    • 84884839208 scopus 로고    scopus 로고
    • Dynamic identification of the deformed body parameters
    • G.C. Cohen, E. Heikkola, P. Joly and P. Neyttaanmäki, editors Springer
    • A. Kravchuk, P. Neittaanmäki. Dynamic Identification of the Deformed Body Parameters. In G.C. Cohen, E. Heikkola, P. Joly and P. Neyttaanmäki, editors, Mathematical and Numerical Aspects of Wave Propagation, pages 577-581, Springer, 2003.
    • (2003) Mathematical and Numerical Aspects of Wave Propagation , pp. 577-581
    • Kravchuk, A.1    Neittaanmäki, P.2
  • 13
    • 84885869927 scopus 로고
    • Formulation of the contact problem for the several deformed bodies as a problem of the non-linear programming
    • A. Kravchuk. Formulation of the contact problem for the several deformed bodies as a problem of the non-linear programming. J. of Appl. Math. and Mech., 42, 466-474, 1978.
    • (1978) J. of Appl. Math. and Mech. , vol.42 , pp. 466-474
    • Kravchuk, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.