-
1
-
-
28544448294
-
Dynamic multidrug therapies for HIV: Optimal and STI control approaches
-
Adams, B.; Banks, H.; Kwon, H.-D.; and Tran, H. 2004. Dynamic multidrug therapies for HIV: Optimal and STI control approaches. In Mathematical Biosciences and Engineering, volume 1, 223-241.
-
(2004)
Mathematical Biosciences and Engineering
, vol.1
, pp. 223-241
-
-
Adams, B.1
Banks, H.2
Kwon, H.-D.3
Tran, H.4
-
2
-
-
70349416596
-
Provably efficient learning with typed parametric models
-
Brunskill, E.; Leffler, B.; Li, L.; Littman, M.; and Roy, N. 2009. Provably efficient learning with typed parametric models. The Journal of Machine Learning Research 10:1955-1988.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 1955-1988
-
-
Brunskill, E.1
Leffler, B.2
Li, L.3
Littman, M.4
Roy, N.5
-
4
-
-
64049089271
-
Clinical data based optimal STI strategies for HIV; A reinforcement learning approach
-
Ernst, D.; Stan, G.-B.; Goncalves, J.; and Wehenkel, L. 2006. Clinical data based optimal STI strategies for HIV; a reinforcement learning approach. In Machine Learning Conference of Belgium and The Netherlands (Benelearn), 65-72.
-
(2006)
Machine Learning Conference of Belgium and the Netherlands (Benelearn)
, pp. 65-72
-
-
Ernst, D.1
Stan, G.-B.2
Goncalves, J.3
Wehenkel, L.4
-
5
-
-
34548083538
-
Model-based exploration in continuous state spaces
-
Jong, N., and Stone, P. 2007. Model-based exploration in continuous state spaces. Abstraction, Reformulation, and Approximation 258-272.
-
(2007)
Abstraction, Reformulation, and Approximation
, pp. 258-272
-
-
Jong, N.1
Stone, P.2
-
6
-
-
1942452450
-
Exploration in metric state spaces
-
Kakade, S.; Kearns, M. J.; and Langford, J. 2003. Exploration in metric state spaces. In ICML, 306-312.
-
(2003)
ICML
, pp. 306-312
-
-
Kakade, S.1
Kearns, M.J.2
Langford, J.3
-
7
-
-
23244466805
-
-
Ph.D. Dissertation, Gatsby Computational Neuroscience Unit, University College London
-
Kakade, S. M. 2003. On the sample complexity of reinforcement learning. Ph.D. Dissertation, Gatsby Computational Neuroscience Unit, University College London.
-
(2003)
On the Sample Complexity of Reinforcement Learning
-
-
Kakade, S.M.1
-
8
-
-
0036832954
-
Near-optimal reinforcement learning in polynomial time
-
Kearns, M. J., and Singh, S. P. 2002. Near-optimal reinforcement learning in polynomial time. Machine Learning 49(2-3):209-232.
-
(2002)
Machine Learning
, vol.49
, Issue.2-3
, pp. 209-232
-
-
Kearns, M.J.1
Singh, S.P.2
-
9
-
-
71149109483
-
Near-Bayesian exploration in polynomial time
-
Kolter, J. Z., and Ng, A. Y. 2009. Near-bayesian exploration in polynomial time. In ICML '09, 513-520.
-
(2009)
ICML '09
, pp. 513-520
-
-
Kolter, J.Z.1
Ng, A.Y.2
-
10
-
-
70349428076
-
-
Ph.D. Dissertation, Rutgers University, New Brunswick, NJ, USA. AAI3386797
-
Li, L. 2009. A unifying framework for computational reinforcement learning theory. Ph.D. Dissertation, Rutgers University, New Brunswick, NJ, USA. AAI3386797.
-
(2009)
A Unifying Framework for Computational Reinforcement Learning Theory
-
-
Li, L.1
-
11
-
-
84893393934
-
Safe exploration in Markov decision processes
-
abs/1205.4810
-
Moldovan, T. M., and Abbeel, P. 2012. Safe exploration in Markov decision processes. CoRR abs/1205.4810.
-
(2012)
CoRR
-
-
Moldovan, T.M.1
Abbeel, P.2
-
13
-
-
31844432138
-
A theoretical analysis of model-based interval estimation
-
New York, NY, USA: ACM
-
Strehl, A. L., and Littman, M. L. 2005. A theoretical analysis of model-based interval estimation. In ICML '05, 856-863. New York, NY, USA: ACM.
-
(2005)
ICML '05
, pp. 856-863
-
-
Strehl, A.L.1
Littman, M.L.2
-
14
-
-
85162058047
-
Online linear regression and its application to model-based reinforcement learning
-
Strehl, A., and Littman, M. 2008. Online linear regression and its application to model-based reinforcement learning. Advances in Neural Information Processing Systems 20:1417-1424.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1417-1424
-
-
Strehl, A.1
Littman, M.2
-
15
-
-
34250700033
-
PAC model-free reinforcement learning
-
Strehl, A. L.; Li, L.; Wiewiora, E.; Langford, J.; and Littman, M. L. 2006. PAC model-free reinforcement learning. In ICML, 881-888.
-
(2006)
ICML
, pp. 881-888
-
-
Strehl, A.L.1
Li, L.2
Wiewiora, E.3
Langford, J.4
Littman, M.L.5
-
16
-
-
77956520676
-
Model-based reinforcement learning with nearly tight exploration complexity bounds
-
Szita, I., and Szepesvári, C. 2010. Model-based reinforcement learning with nearly tight exploration complexity bounds. In ICML, 1031-1038.
-
(2010)
ICML
, pp. 1031-1038
-
-
Szita, I.1
Szepesvári, C.2
-
17
-
-
0012252296
-
Tight performance bounds on greedy policies based on imperfect value functions
-
College of Computer Science
-
Williams, R., and Baird, L. 1993. Tight performance bounds on greedy policies based on imperfect value functions. Technical report, Northeastern University, College of Computer Science.
-
(1993)
Technical Report, Northeastern University
-
-
Williams, R.1
Baird, L.2
|