메뉴 건너뛰기




Volumn 8309 LNCS, Issue , 2013, Pages 293-298

A modular and distributed bayesian framework for activity recognition in dynamic smart environments

Author keywords

Bayesian algorithm; distributed software and frameworks; Smart home office; User contexts and activity recognition

Indexed keywords

AMBIENT INTELLIGENCE; ARTIFICIAL INTELLIGENCE; AUTOMATION; PATTERN RECOGNITION;

EID: 84893368965     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-03647-2_27     Document Type: Conference Paper
Times cited : (4)

References (5)
  • 3
    • 77950247206 scopus 로고    scopus 로고
    • Machine learning methods for classifying human physical activity from on-body accelerometers
    • Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154-1175 (2010)
    • (2010) Sensors , vol.10 , Issue.2 , pp. 1154-1175
    • Mannini, A.1    Sabatini, A.M.2
  • 4
    • 80155129583 scopus 로고    scopus 로고
    • Ambient intelligence: A survey
    • Sadri, F.: Ambient intelligence: A survey. ACM Comput. Surv. 43(4), 36:1-36:66 (2011)
    • (2011) ACM Comput. Surv. , vol.43 , Issue.4 , pp. 361-3666
    • Sadri, F.1
  • 5
    • 51849124071 scopus 로고    scopus 로고
    • Activity recognition via user-trace segmentation
    • Yin, J., Yang, Q., Shen, D., Li, Z.-N.: Activity recognition via user-trace segmentation. ACM Trans. Sen. Netw. 4(4), 19:1-19:34 (2008)
    • (2008) ACM Trans. Sen. Netw. , vol.4 , Issue.4 , pp. 191-1934
    • Yin, J.1    Yang, Q.2    Shen, D.3    Li, Z.-N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.