메뉴 건너뛰기




Volumn 8228 LNCS, Issue PART 3, 2013, Pages 576-583

Empirical evaluation on deep learning of depth feature for human activity recognition

Author keywords

Deep learning; Human activity recognition; Kinect sensor

Indexed keywords

ACTIVITY RECOGNITION; ADDITIONAL EXPERIMENTS; DEEP LEARNING; DEPTH INFORMATION; EMPIRICAL EVALUATIONS; HUMAN ACTIVITY RECOGNITION; KINECT SENSORS; UNSUPERVISED FEATURE LEARNING;

EID: 84893362892     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-42051-1_71     Document Type: Conference Paper
Times cited : (2)

References (19)
  • 1
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithms for deep belief nets
    • Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithms for deep belief nets. Neu. Comp. (2006)
    • (2006) Neu. Comp.
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 3
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations
    • Lee, H., Grosse, R., Ranganath, R., Ng, A.: Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations. In: ICML (2009)
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.4
  • 5
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV (2004)
    • (2004) IJCV
    • Lowe, D.1
  • 6
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 7
    • 33745805403 scopus 로고    scopus 로고
    • A Fast Learning Algorithm for Deep Belief Nets
    • Hinton, G., Osindero, S., Teh, Y.: A Fast Learning Algorithm for Deep Belief Nets. Neural Computation 18(7), 1527-1554 (2006)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 8
    • 85162387004 scopus 로고    scopus 로고
    • Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms
    • Bo, L., Ren, X., Fox, D.: Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms. In: NIPS (2011)
    • (2011) NIPS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 9
    • 80052889296 scopus 로고    scopus 로고
    • Learning Image Representations from the Pixel Level via Hierarchical Sparse Coding
    • Yu, K., Lin, Y., Lafferty, J.: Learning Image Representations from the Pixel Level via Hierarchical Sparse Coding. In: CVPR (2011)
    • (2011) CVPR
    • Yu, K.1    Lin, Y.2    Lafferty, J.3
  • 10
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical spatio-temporal features for action recognition with independent subspace analysis
    • Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical spatio-temporal features for action recognition with independent subspace analysis. In: CVPR (2011)
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 12
    • 84897508000 scopus 로고    scopus 로고
    • Learning Spatio-Temporal Structure from RGB-D Videos for Human Activity Detection and Anticipation
    • Koppula, H.S., Saxena, A.: Learning Spatio-Temporal Structure from RGB-D Videos for Human Activity Detection and Anticipation. In: ICML (2013)
    • (2013) ICML
    • Koppula, H.S.1    Saxena, A.2
  • 13
    • 84864487638 scopus 로고    scopus 로고
    • Unstructured human activity detection from rgbd images
    • Sung, J., Ponce, C., Selman, B., Saxena, A.: Unstructured human activity detection from rgbd images. In: ICRA (2012)
    • (2012) ICRA
    • Sung, J.1    Ponce, C.2    Selman, B.3    Saxena, A.4
  • 14
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-Recursive Deep Learning for 3D Object Classification
    • Socher, R., Huval, B., Bath, B.P., Manning, C.D., Ng, A.Y.: Convolutional-Recursive Deep Learning for 3D Object Classification. In: NIPS (2012)
    • (2012) NIPS
    • Socher, R.1    Huval, B.2    Bath, B.P.3    Manning, C.D.4    Ng, A.Y.5
  • 15
    • 84898890371 scopus 로고    scopus 로고
    • Evaluation of local spatio-temporal features for action recognition
    • Wang, H., Ullah, M.M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: BMVC (2010)
    • (2010) BMVC
    • Wang, H.1    Ullah, M.M.2    Klaser, A.3    Laptev, I.4    Schmid, C.5
  • 17
    • 0028416938 scopus 로고
    • Independent Component Analysis: A new concept?
    • Pierre, C.: Independent Component Analysis: a new concept? Signal Processing 36(3), 287-314 (1994)
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Pierre, C.1
  • 18
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5, 975-1005 (2003)
    • (2003) Journal of Machine Learning Research , vol.5 , pp. 975-1005
    • Wu, T.F.1    Lin, C.J.2    Weng, R.C.3
  • 19
    • 84893404851 scopus 로고    scopus 로고
    • http://www.codeproject.com/Articles/317974/KinectDepthSmoothing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.