메뉴 건너뛰기




Volumn , Issue , 2013, Pages 157-166

Faster canonical forms for strongly regular graphs (extended abstract)

Author keywords

Algorithms; Graph isomorphism; Strongly regular graphs

Indexed keywords

AUTOMORPHISMS; CANONICAL FORM; DIVIDE AND CONQUER; EXTENDED ABSTRACTS; GRAPH ISOMORPHISM; GROUP THEORETIC METHOD; POLY-LOGARITHMIC FACTORS; STRONGLY REGULAR GRAPHS;

EID: 84893321204     PISSN: 02725428     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FOCS.2013.25     Document Type: Conference Paper
Times cited : (31)

References (21)
  • 1
    • 71149116146 scopus 로고
    • Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof system
    • O. Goldreich, S. Micali, and A. Wigderson, "Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof system, " J. ACM, vol. 38, no. 1, pp. 691-729, 1991.
    • (1991) J. ACM , vol.38 , Issue.1 , pp. 691-729
    • Goldreich, O.1    Micali, S.2    Wigderson, A.3
  • 2
    • 0023995534 scopus 로고
    • Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity classes
    • L. Babai and S. Moran, "Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity classes, " J. Comp. Syst. Sci., vol. 36, pp. 254-276, 1988.
    • (1988) J. Comp. Syst. Sci. , vol.36 , pp. 254-276
    • Babai, L.1    Moran, S.2
  • 3
    • 0020918135 scopus 로고
    • Canonical labeling of graphs
    • L. Babai and E. M. Luks, "Canonical labeling of graphs, " In: 15th STOC, pp. 171-183, 1983.
    • (1983) 15th STOC , pp. 171-183
    • Babai, L.1    Luks, E.M.2
  • 4
    • 0020881171 scopus 로고
    • Computational complexity and the classification of finite simple groups
    • L. Babai, W. M. Kantor, and E. M. Luks, "Computational complexity and the classification of finite simple groups, " In: 24th FOCS, pp. 162-171, 1983.
    • (1983) 24th FOCS , pp. 162-171
    • Babai, L.1    Kantor, W.M.2    Luks, E.M.3
  • 6
    • 85025192644 scopus 로고
    • The graph isomorphism disease
    • R. C. Read and D. G. Corneil, "The graph isomorphism disease, " J. Graph Th., vol. 1, no. 4, pp. 339-363, 1977.
    • (1977) J. Graph Th. , vol.1 , Issue.4 , pp. 339-363
    • Read, R.C.1    Corneil, D.G.2
  • 7
    • 0345064820 scopus 로고
    • On the complexity of canonical labeling of strongly regular graphs
    • L. Babai, "On the complexity of canonical labeling of strongly regular graphs, " SIAM J. Comput., vol. 9, no. 1, pp. 212-216, 1980.
    • (1980) SIAM J. Comput. , vol.9 , Issue.1 , pp. 212-216
    • Babai, L.1
  • 8
    • 0000438362 scopus 로고
    • On the order of uniprimitive permutation groups
    • L. Babai, "On the order of uniprimitive permutation groups, " Annals of Math., vol. 113, no. 3, pp. 553-568, 1981.
    • (1981) Annals of Math. , vol.113 , Issue.3 , pp. 553-568
    • Babai, L.1
  • 9
    • 0029702181 scopus 로고    scopus 로고
    • Faster isomorphism testing of strongly regular graphs
    • D. A. Spielman, "Faster isomorphism testing of strongly regular graphs, " In: 28th STOC, pp. 576-584, 1996.
    • (1996) 28th STOC , pp. 576-584
    • Spielman, D.A.1
  • 10
    • 0010134107 scopus 로고
    • Strongly regular graphs with (-1, 1, 0)- Adjacency matrix having eigenvalue 3
    • J. J. Seidel, "Strongly regular graphs with (-1, 1, 0)- Adjacency matrix having eigenvalue 3, " Linear Algebra Appl., vol. 1, pp. 281-298, 1968.
    • (1968) Linear Algebra Appl , vol.1 , pp. 281-298
    • Seidel, J.J.1
  • 11
    • 0042160391 scopus 로고
    • Strongly regular graphs with smallest eigenvalue -m
    • A. Neumaier, "Strongly regular graphs with smallest eigenvalue -m, " Arch. Math., vol. 33, no. 4, pp. 392- 400, 1979.
    • (1979) Arch. Math. , vol.33 , Issue.4 , pp. 392-400
    • Neumaier, A.1
  • 12
    • 14844349240 scopus 로고
    • Quasiresidual 2-designs, 1 1 2 -designs, and strongly regular multigraphs
    • A. Neumaier, "Quasiresidual 2-designs, 1 1 2 -designs, and strongly regular multigraphs, " Geom. Dedicata, vol. 12, no. 4, pp. 351-366, 1982.
    • (1982) Geom. Dedicata , vol.12 , Issue.4 , pp. 351-366
    • Neumaier, A.1
  • 14
    • 85023100812 scopus 로고
    • On the nlog n isomorphism technique: A preliminary report
    • G. L. Miller, "On the nlog n isomorphism technique: A preliminary report, " In: 10th STOC, pp. 51-58, 1978.
    • (1978) 10th STOC , pp. 51-58
    • Miller, G.L.1
  • 15
    • 84879813038 scopus 로고    scopus 로고
    • Quasipolynomial-time canonical form for Steiner designs
    • L. Babai and J. Wilmes, "Quasipolynomial-time canonical form for Steiner designs, " In: 45th STOC, pp. 261- 270, 2013.
    • (2013) 45th STOC , pp. 261-270
    • Babai, L.1    Wilmes, J.2
  • 16
    • 84879807122 scopus 로고    scopus 로고
    • Multi-stage design for quasipolynomial-time isomorphism testing of Steiner 2-systems
    • X. Chen, X. Sun, and S.-H. Teng, "Multi-stage design for quasipolynomial-time isomorphism testing of Steiner 2-systems, " In: 45th STOC, pp. 271-280, 2013.
    • (2013) 45th STOC , pp. 271-280
    • Chen, X.1    Sun, X.2    Teng, S.-H.3
  • 18
    • 0020496540 scopus 로고
    • Isomorphism of graphs which are pairwise k-separable
    • G. L. Miller, "Isomorphism of graphs which are pairwise k-separable, " Information and Control, vol. 56, no. 1-2, pp. 21-33, 1983.
    • (1983) Information and Control , vol.56 , Issue.1-2 , pp. 21-33
    • Miller, G.L.1
  • 19
    • 0003284912 scopus 로고
    • On construction and identification of graphs
    • Ed., Springer- Verlag
    • B. Weisfeiler, Ed., On construction and identification of graphs, ser. Lecture Notes in Mathematics. Springer- Verlag, 1976, vol. 558.
    • (1976) Ser. Lecture Notes in Mathematics , vol.558
    • Weisfeiler, B.1
  • 20
    • 0020166327 scopus 로고
    • Isomorphism of graphs of bounded valence can be tested in polynomial time
    • E. M. Luks, "Isomorphism of graphs of bounded valence can be tested in polynomial time, " J. Comp. Syst. Sci., vol. 25, no. 1, pp. 42-65, 1982.
    • (1982) J. Comp. Syst. Sci. , vol.25 , Issue.1 , pp. 42-65
    • Luks, E.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.