메뉴 건너뛰기




Volumn , Issue , 2013, Pages 199-208

Beehive: Large-scale log analysis for detecting suspicious activity in enterprise networks

Author keywords

[No Author keywords available]

Indexed keywords

ANTIVIRUS SOFTWARES; ENTERPRISE NETWORKS; ENTERPRISE SECURITY; INCIDENT RESPONSE; LARGE ENTERPRISE; SECURITY INCIDENT; SECURITY PRODUCTS; SIGNATURE-BASED APPROACH;

EID: 84893295028     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2523649.2523670     Document Type: Conference Paper
Times cited : (240)

References (41)
  • 1
    • 84893253013 scopus 로고    scopus 로고
    • OSSEC - Open Source Security. http://www.ossec.net.
  • 2
    • 84893306962 scopus 로고    scopus 로고
    • Snort. http://www.snort.org.
  • 3
    • 84893309161 scopus 로고    scopus 로고
    • The Bro Network Security Monitor. http://www.bro.org/.
  • 4
    • 34547399387 scopus 로고    scopus 로고
    • A multifaceted approach to understanding the botnet phenomenon
    • M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Multifaceted Approach to Understanding the Botnet Phenomenon. In IMC, 2006.
    • (2006) IMC
    • Abu Rajab, M.1    Zarfoss, J.2    Monrose, F.3    Terzis, A.4
  • 8
    • 84872102390 scopus 로고    scopus 로고
    • Disclosure: Detecting botnet command and control servers through large-scale NetFlow analysis
    • L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel. Disclosure: Detecting Botnet Command and Control Servers Through Large-scale NetFlow Analysis. In ACSAC, 2012.
    • (2012) ACSAC
    • Bilge, L.1    Balzarotti, D.2    Robertson, W.3    Kirda, E.4    Kruegel, C.5
  • 9
    • 84922594806 scopus 로고    scopus 로고
    • EXPOSURE: Finding malicious domains using passive DNS analysis
    • L. Bilge, E. Kirda, K. Christopher, and M. Balduzzi. EXPOSURE: Finding Malicious Domains Using Passive DNS Analysis. In NDSS, 2011.
    • (2011) NDSS
    • Bilge, L.1    Kirda, E.2    Christopher, K.3    Balduzzi, M.4
  • 10
    • 35348850600 scopus 로고    scopus 로고
    • An algorithm for anomaly-based botnet detection
    • J. R. Binkley and S. Singh. An Algorithm for Anomaly-based Botnet Detection. In USENIX SRUTI, 2006.
    • (2006) USENIX SRUTI
    • Binkley, J.R.1    Singh, S.2
  • 12
    • 34548268064 scopus 로고    scopus 로고
    • Authentication anomaly detection: A case study on a virtual private network
    • M. J. Chapple, N. Chawla, and A. Striegel. Authentication Anomaly Detection: A Case Study on a Virtual Private Network. In ACM MineNet, 2007.
    • (2007) ACM MineNet
    • Chapple, M.J.1    Chawla, N.2    Striegel, A.3
  • 13
    • 38049035805 scopus 로고    scopus 로고
    • Botnet detection by monitoring group activities in DNS traffic
    • H. Choi, H. Lee, H. Lee, and H. Kim. Botnet Detection by Monitoring Group Activities in DNS Traffic. In IEEE CIT, 2007.
    • (2007) IEEE CIT
    • Choi, H.1    Lee, H.2    Lee, H.3    Kim, H.4
  • 14
    • 34547422995 scopus 로고    scopus 로고
    • The zombie roundup: Understanding, detecting, and disrupting botnets
    • E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup: Understanding, Detecting, and Disrupting Botnets. In USENIX SRUTI, 2005.
    • (2005) USENIX SRUTI
    • Cooke, E.1    Jahanian, F.2    McPherson, D.3
  • 15
    • 62949129764 scopus 로고    scopus 로고
    • Extracting hidden anomalies using sketch and non Gaussian multiresolution statistical detection procedures
    • G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho. Extracting Hidden Anomalies Using Sketch and non Gaussian Multiresolution Statistical Detection Procedures. In ACM SIGCOMM LSAD, 2007.
    • (2007) ACM SIGCOMM LSAD
    • Dewaele, G.1    Fukuda, K.2    Borgnat, P.3    Abry, P.4    Cho, K.5
  • 17
    • 33746632334 scopus 로고    scopus 로고
    • Botnet tracking: Exploring a root-cause methodology to prevent distributed denial-of-service attacks
    • F. C. Freiling, T. Holz, and G. Wicherski. Botnet Tracking: Exploring a Root-cause Methodology to Prevent Distributed Denial-of-service Attacks. In ESORICS, 2005.
    • (2005) ESORICS
    • Freiling, F.C.1    Holz, T.2    Wicherski, G.3
  • 18
    • 85075837457 scopus 로고    scopus 로고
    • BotMiner: Clustering analysis of network traffic for protocoland structure-independent botnet detection
    • G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering Analysis of Network Traffic for Protocoland Structure-independent Botnet Detection. In USENIX Security, 2008.
    • (2008) USENIX Security
    • Gu, G.1    Perdisci, R.2    Zhang, J.3    Lee, W.4
  • 19
    • 85061529860 scopus 로고    scopus 로고
    • BotHunter: Detecting malware infection through IDS-driven dialog correlation
    • G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: Detecting Malware Infection Through IDS-driven Dialog Correlation. In USENIX Security, 2007.
    • (2007) USENIX Security
    • Gu, G.1    Porras, P.2    Yegneswaran, V.3    Fong, M.4    Lee, W.5
  • 20
    • 85175133385 scopus 로고    scopus 로고
    • BotSniffer: Detecting botnet command and control channels in network traffic
    • G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet Command and Control Channels in Network Traffic. In NDSS, 2008.
    • (2008) NDSS
    • Gu, G.1    Zhang, J.2    Lee, W.3
  • 21
    • 84928140517 scopus 로고    scopus 로고
    • Measuring and detecting fast-flux service networks
    • T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring and Detecting Fast-Flux Service Networks. In NDSS, 2008.
    • (2008) NDSS
    • Holz, T.1    Gorecki, C.2    Rieck, K.3    Freiling, F.C.4
  • 26
    • 84893321556 scopus 로고    scopus 로고
    • The use of honeynets to detect exploited systems across large enterprise networks
    • J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver. The Use of Honeynets to Detect Exploited Systems Across Large Enterprise Networks. In IEEE IAW, 2003.
    • (2003) IEEE IAW
    • Levine, J.1    LaBella, R.2    Owen, H.3    Contis, D.4    Culver, B.5
  • 27
    • 84878352747 scopus 로고    scopus 로고
    • Using machine learning techniques to identify botnet traffic
    • C. Livadas, R. Walsh, D. Lapsley, and W. Strayer. Using Machine Learning Techniques to Identify Botnet Traffic. In IEEE LCN, 2006.
    • (2006) IEEE LCN
    • Livadas, C.1    Walsh, R.2    Lapsley, D.3    Strayer, W.4
  • 28
    • 70350630557 scopus 로고    scopus 로고
    • Beyond blacklists: Learning to detect malicious web sites from suspicious URLs
    • J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond Blacklists: Learning to Detect Malicious Web Sites from Suspicious URLs. In ACM SIGKDD KDD, 2009.
    • (2009) ACM SIGKDD KDD
    • Ma, J.1    Saul, L.K.2    Savage, S.3    Voelker, G.M.4
  • 29
    • 58149161861 scopus 로고    scopus 로고
    • As the net churns: Fast-flux botnet observations
    • J. Nazario and T. Holz. As the Net Churns: Fast-flux Botnet Observations. In MALWARE, 2008.
    • (2008) MALWARE
    • Nazario, J.1    Holz, T.2
  • 30
  • 31
    • 77950795817 scopus 로고    scopus 로고
    • Detecting malicious flux service networks through passive analysis of recursive DNS traces
    • R. Perdisci, I. Corona, D. Dagon, and W. Lee. Detecting Malicious Flux Service Networks through Passive Analysis of Recursive DNS Traces. In ACSAC, 2009.
    • (2009) ACSAC
    • Perdisci, R.1    Corona, I.2    Dagon, D.3    Lee, W.4
  • 32
    • 33750300419 scopus 로고    scopus 로고
    • Understanding the network-level behavior of spammers
    • A. Ramachandran and N. Feamster. Understanding the Network-level Behavior of Spammers. In ACM SIGCOMM, 2006.
    • (2006) ACM SIGCOMM
    • Ramachandran, A.1    Feamster, N.2
  • 33
    • 84893296796 scopus 로고    scopus 로고
    • Anomaly characterization in flow-based traffic time series
    • A. Sperotto, R. Sadre, and A. Pras. Anomaly Characterization in Flow-Based Traffic Time Series. In IEEE IPOM, 2008.
    • (2008) IEEE IPOM
    • Sperotto, A.1    Sadre, R.2    Pras, A.3
  • 36
    • 84893260171 scopus 로고    scopus 로고
    • Bayesian bot detection based on DNS traffic similarity
    • R. Villamarín-Salomón and J. C. Brustoloni. Bayesian Bot Detection Based on DNS Traffic Similarity. In ACM SAC, 2009.
    • (2009) ACM SAC
    • Villamarín-Salomón, R.1    Brustoloni, J.C.2
  • 37
    • 70350070819 scopus 로고    scopus 로고
    • Entropy based worm and anomaly detection in fast IP networks
    • A. Wagner and B. Plattner. Entropy Based Worm and Anomaly Detection in Fast IP Networks. In IEEE WETICE, 2005.
    • (2005) IEEE WETICE
    • Wagner, A.1    Plattner, B.2
  • 38
    • 78650869579 scopus 로고    scopus 로고
    • Detecting algorithmically generated malicious domain names
    • S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan. Detecting Algorithmically Generated Malicious Domain Names. In IMC, 2010.
    • (2010) IMC
    • Yadav, S.1    Reddy, A.K.K.2    Reddy, A.N.3    Ranjan, S.4
  • 39
    • 84893247861 scopus 로고    scopus 로고
    • Winning with DNS failures: Strategies for faster botnet detection
    • S. Yadav and A. N. Reddy. Winning With DNS Failures: Strategies for Faster Botnet Detection. In SECURECOMM, 2011.
    • (2011) SECURECOMM
    • Yadav, S.1    Reddy, A.N.2
  • 40
    • 58449108281 scopus 로고    scopus 로고
    • Traffic aggregation for malware detection
    • T.-F. Yen and M. K. Reiter. Traffic Aggregation for Malware Detection. In DIMVA, 2008.
    • (2008) DIMVA
    • Yen, T.-F.1    Reiter, M.K.2
  • 41
    • 84866697061 scopus 로고    scopus 로고
    • Safeguarding academic accounts and resources with the university credential abuse auditing system
    • J. Zhang, R. Berthier, W. Rhee, M. Bailey, P. Pal, F. Jahanian, and W. H. Sanders. Safeguarding Academic Accounts and Resources with the University Credential Abuse Auditing System. In DSN, 2012.
    • (2012) DSN
    • Zhang, J.1    Berthier, R.2    Rhee, W.3    Bailey, M.4    Pal, P.5    Jahanian, F.6    Sanders, W.H.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.