메뉴 건너뛰기




Volumn 29, Issue 1, 2014, Pages 116-141

On density-based data streams clustering algorithms: A survey

Author keywords

data stream; density based clustering; grid based clustering; micro clustering

Indexed keywords

DATA STREAM; DENSITY-BASED ALGORITHM; DENSITY-BASED CLUSTERING; DENSITY-BASED CLUSTERING ALGORITHMS; DENSITY-BASED METHOD; GRID-BASED CLUSTERING; MEASURING ALGORITHM; MICRO-CLUSTERING;

EID: 84893276616     PISSN: 10009000     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11390-014-1416-y     Document Type: Review
Times cited : (183)

References (96)
  • 6
    • 84880099592 scopus 로고    scopus 로고
    • Temporal structure learning for clustering massive data streams in real-time
    • April
    • Hahsler M, Dunham M H. Temporal structure learning for clustering massive data streams in real-time. In Proc. the 11th SIAM Conference on Data Mining, April 2011, pp. 664-675.
    • (2011) Proc the 11th SIAM Conference on Data Mining , pp. 664-675
    • Hahsler, M.1    Dunham, M.H.2
  • 7
    • 0036203413 scopus 로고    scopus 로고
    • Streaming-data algorithms for high-quality clustering
    • Feb. 26-Mar. 1
    • O Ćallaghan L, Mishra N, Meyerson A, et al. Streaming-data algorithms for high-quality clustering. In Proc. the 18th Int. Conf. Data Engineering, Feb. 26-Mar. 1, 2002, pp. 685-694.
    • (2002) Proc the 18th Int. Conf. Data Engineering , pp. 685-694
    • Ćallaghan, O.L.1
  • 8
    • 0038205905 scopus 로고    scopus 로고
    • Requirements for clustering data streams
    • 10.1145/507515.507519
    • Barbará D. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 2002, 3(2): 23-27.
    • (2002) SIGKDD Explorations Newsletter , vol.3 , Issue.2 , pp. 23-27
    • Barbará, D.1
  • 16
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • 10.1016/j.patrec.2009.09.011
    • Jain A K. Data clustering: 50 years beyond K-means. Pattern Recognition Letter, 2010, 31(8): 651-666.
    • (2010) Pattern Recognition Letter , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 20
    • 84855684066 scopus 로고    scopus 로고
    • A comparative study of density-based clustering algorithms on data streams: Micro-clustering approaches
    • Ao S, Castillo O, Huang X (eds.), Springer
    • Amini A, Wah T Y. A comparative study of density-based clustering algorithms on data streams: Micro-clustering approaches. In Lecture Notes in Electrical Engineering 110, Ao S, Castillo O, Huang X (eds.), Springer, 2012, pp. 275-287.
    • (2012) Lecture Notes in Electrical Engineering , vol.110 , pp. 275-287
    • Amini, A.1    Wah, T.Y.2
  • 21
    • 84870684055 scopus 로고    scopus 로고
    • A survey of stream clustering algorithms
    • Aggarwal C C, Reddy C (eds.), CRC Press
    • Aggarwal C C. A survey of stream clustering algorithms. In Data Clustering: Algorithms and Applications, Aggarwal C C, Reddy C (eds.), CRC Press, 2013, pp. 457-482.
    • (2013) Data Clustering: Algorithms and Applications , pp. 457-482
    • Aggarwal, C.C.1
  • 24
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • 10.1109/TIT.1982.1056489 0504.94015 651807
    • Lloyd S P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982, 28(2): 129-137.
    • (1982) IEEE Transactions on Information Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.P.1
  • 27
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • 10.1109/2.781637
    • Karypis G, Han E, Kumar V. Chameleon: Hierarchical clustering using dynamic modeling. Computer, 1999, 32(8): 68-75.
    • (1999) Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 28
    • 80053927938 scopus 로고    scopus 로고
    • The clustree: Indexing micro-clusters for anytime stream mining
    • 10.1007/s10115-010-0342-8
    • Kranen P, Assent I, Baldauf C, Seidl T. The clustree: Indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst., 2011, 29(2): 249-272.
    • (2011) Knowl. Inf. Syst. , vol.29 , Issue.2 , pp. 249-272
    • Kranen, P.1    Assent, I.2    Baldauf, C.3    Seidl, T.4
  • 30
    • 0034133653 scopus 로고    scopus 로고
    • Wavecluster: A wavelet-based clustering approach for spatial data in very large databases
    • 10.1007/s007780050009
    • Sheikholeslami G, Chatterjee S, Zhang A. Wavecluster: A wavelet-based clustering approach for spatial data in very large databases. The VLDB Journal, 2000, 8(3/4): 289-304.
    • (2000) The VLDB Journal , vol.8 , Issue.34 , pp. 289-304
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 31
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • 10.1145/276305.276314
    • Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998, 27(2): 94-105.
    • (1998) ACM SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 32
    • 73349087457 scopus 로고    scopus 로고
    • Stream data clustering based on grid density and attraction
    • Article No. 12
    • Tu L, Chen Y. Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery Data, 2009, 3(3): Article No. 12.
    • (2009) ACM Transactions on Knowledge Discovery Data , vol.3 , Issue.3
    • Tu, L.1    Chen, Y.2
  • 33
    • 73349121934 scopus 로고    scopus 로고
    • Density-based clustering of data streams at multiple resolutions
    • Article No. 14
    • Wan L, Ng W K, Dang X H, et al. Density-based clustering of data streams at multiple resolutions. ACM Trans. Knowledge Discovery from Data, 2009, 3(3): Article No. 14.
    • (2009) ACM Trans. Knowledge Discovery from Data , vol.3 , Issue.3
    • Wan, L.1    Ng, W.K.2    Dang, X.H.3
  • 37
    • 0347172110 scopus 로고    scopus 로고
    • Optics: Ordering points to identify the clustering structure
    • 10.1145/304181.304187
    • Ankerst M, Breunig M M, Kriegel H P, Sander J. Optics: Ordering points to identify the clustering structure. ACM SIGMOD Record, 1999, 28(2): 49-60.
    • (1999) ACM SIGMOD Record , vol.28 , Issue.2 , pp. 49-60
    • Ankerst, M.1    Breunig, M.M.2    Kriegel, H.P.3    Sander, J.4
  • 38
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • Sept.
    • Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with noise. In Proc. the 4th KDD, Sept. 1998, pp. 58-65.
    • (1998) Proc the 4th KDD , pp. 58-65
    • Hinneburg, A.1    Keim, D.A.2
  • 40
    • 43249088014 scopus 로고    scopus 로고
    • Tracking clusters in evolving data streams over sliding windows
    • 10.1007/s10115-007-0070-x
    • Zhou A, Cao F, Qian W, Jin C. Tracking clusters in evolving data streams over sliding windows. Knowledge and Information Systems, 2008, 15(2): 181-214.
    • (2008) Knowledge and Information Systems , vol.15 , Issue.2 , pp. 181-214
    • Zhou, A.1    Cao, F.2    Qian, W.3    Jin, C.4
  • 45
    • 22044440960 scopus 로고    scopus 로고
    • On high dimensional projected clustering of data streams
    • 10.1007/s10618-005-0645-7 2145978
    • Aggarwal C C, Han J, Wang J, Yu P S. On high dimensional projected clustering of data streams. Data Mining and Knowledge Discovery, 2005, 10(3): 251-273.
    • (2005) Data Mining and Knowledge Discovery , vol.10 , Issue.3 , pp. 251-273
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 47
    • 78149381013 scopus 로고    scopus 로고
    • Discovery of frequent patterns in transactional data streams
    • Hameurlain A, Küng J, Wagner R, et al. (eds.), Springer Berlin/Heidelberg
    • Ng W, Dash M. Discovery of frequent patterns in transactional data streams. In Lecture Notes in Computer Science 6380, Hameurlain A, Küng J, Wagner R, et al. (eds.), Springer Berlin/Heidelberg, 2010, pp. 1-30.
    • (2010) Lecture Notes in Computer Science , vol.6380 , pp. 1-30
    • Ng, W.1    Dash, M.2
  • 48
    • 0022026217 scopus 로고
    • Random sampling with a reservoir
    • 10.1145/3147.3165 0562.68028 793056
    • Vitter J S. Random sampling with a reservoir. ACM Trans. Math. Softw., 1985, 11(1): 37-57.
    • (1985) ACM Trans. Math. Softw. , vol.11 , Issue.1 , pp. 37-57
    • Vitter, J.S.1
  • 50
    • 51849127627 scopus 로고    scopus 로고
    • A survey of synopsis construction in data streams
    • Aggarwal C C (ed.), Springer
    • Aggarwal C C, Yu P S. A survey of synopsis construction in data streams. In Advances in Database Systems 31, Aggarwal C C (ed.), Springer, 2007, pp. 169-207.
    • (2007) Advances in Database Systems , vol.31 , pp. 169-207
    • Aggarwal, C.C.1    Yu, P.S.2
  • 54
    • 0242698166 scopus 로고    scopus 로고
    • KDD-cup 99: Knowledge discovery in a charitable organization's donor database
    • 10.1145/846183.846204
    • Rosset S, Inger A. KDD-cup 99: Knowledge discovery in a charitable organization's donor database. SIGKDD Explorations Newsletter, 2000, 1(2): 85-90.
    • (2000) SIGKDD Explorations Newsletter , vol.1 , Issue.2 , pp. 85-90
    • Rosset, S.1    Inger, A.2
  • 55
    • 0001518855 scopus 로고
    • A general statistical framework for assessing categorical clustering in free recall
    • 10.1037/0033-2909.83.6.1072
    • Hubert L J, Levin J R. A general statistical framework for assessing categorical clustering in free recall. Psychological Bulletin, 1976, 83(6): 1072-1080.
    • (1976) Psychological Bulletin , vol.83 , Issue.6 , pp. 1072-1080
    • Hubert, L.J.1    Levin, J.R.2
  • 58
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • 10.1080/01621459.1971.10482356
    • Rand W M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 1971, 66(336): 846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 59
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • 10.1023/B:MACH.0000027785.44527.d6 1089.68615
    • Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 2004, 55(3): 311-331.
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2
  • 60
    • 2142794241 scopus 로고    scopus 로고
    • Technical Report National Research Institute for Mathematics and Computer Science, Stichting Mathematisch Centrum, Netherlands
    • Dongen S. Performance criteria for graph clustering and Markov cluster experiments. Technical Report, National Research Institute for Mathematics and Computer Science, Stichting Mathematisch Centrum, Netherlands, 2000.
    • (2000) Performance Criteria for Graph Clustering and Markov Cluster Experiments
    • Dongen, S.1
  • 64
    • 0000228352 scopus 로고
    • A Monte Carlo study of thirty internal criterion measures for cluster analysis
    • 10.1007/BF02293899 0472.62070 655020
    • Milligan G. A Monte Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika, 1981, 46(2): 187-199.
    • (1981) Psychometrika , vol.46 , Issue.2 , pp. 187-199
    • Milligan, G.1
  • 67
    • 84872422874 scopus 로고    scopus 로고
    • A single pass algorithm for clustering evolving data streams based on swarm intelligence
    • 10.1007/s10618-011-0242-x 3009771
    • Forestiero A, Pizzuti C, Spezzano G. A single pass algorithm for clustering evolving data streams based on swarm intelligence. Data Mining and Knowledge Discovery, 2013, 26(1): 1-26.
    • (2013) Data Mining and Knowledge Discovery , vol.26 , Issue.1 , pp. 1-26
    • Forestiero, A.1    Pizzuti, C.2    Spezzano, G.3
  • 68
    • 80052404172 scopus 로고    scopus 로고
    • MOA: Massive online analysis, a framework for stream classification and clustering
    • Bifet A, Holmes G, Pfahringer B, et al. MOA: Massive online analysis, a framework for stream classification and clustering. Journal of Machine Learning Research, 2010, 11: 44-50.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 44-50
    • Bifet, A.1    Holmes, G.2    Pfahringer, B.3
  • 70
    • 79951737370 scopus 로고    scopus 로고
    • Clustering performance on evolving data streams: Assessing algorithms and evaluation measures within MOA
    • Dec. 2010
    • Kranen P, Kremer H, Jansen T, et al. Clustering performance on evolving data streams: Assessing algorithms and evaluation measures within MOA. In Proc. the IEEE Int. Conf. Data Mining Workshops, Dec. 2010, pp. 1400-1403.
    • Proc the IEEE Int. Conf. Data Mining Workshops , pp. 1400-1403
    • Kranen, P.1    Kremer, H.2    Jansen, T.3
  • 77
    • 84864911201 scopus 로고    scopus 로고
    • SOStream: Self organizing density-based clustering over data stream
    • Perner P (ed.), Springer Berlin Heidelberg
    • Isaksson C, Dunham M, Hahsler M. SOStream: Self organizing density-based clustering over data stream. In Lecture Notes in Computer Science 7376, Perner P (ed.), Springer Berlin Heidelberg, 2012, pp. 264-278.
    • (2012) Lecture Notes in Computer Science , vol.7376 , pp. 264-278
    • Isaksson, C.1    Dunham, M.2    Hahsler, M.3
  • 78
  • 81
    • 79952413308 scopus 로고    scopus 로고
    • Clustering over data streams based on grid density and index tree
    • 10.4156/jcit.vol6.issue1.11
    • Ren J, Cai B, Hu C. Clustering over data streams based on grid density and index tree. Journal of Convergence Information Technology, 2011, 6(1): 83-93.
    • (2011) Journal of Convergence Information Technology , vol.6 , Issue.1 , pp. 83-93
    • Ren, J.1    Cai, B.2    Hu, C.3
  • 83
    • 84893273831 scopus 로고    scopus 로고
    • DENGRIS-Stream: A density-grid based clustering algorithm for evolving data streams over sliding window
    • Dec.
    • Amini A, Teh Ying W. DENGRIS-Stream: A density-grid based clustering algorithm for evolving data streams over sliding window. In Proc. International Conference on Data Mining and Computer Engineering, Dec. 2012, pp. 206-210.
    • (2012) Proc. International Conference on Data Mining and Computer Engineering , pp. 206-210
    • Amini, A.1    Teh Ying, W.2
  • 86
    • 34548637278 scopus 로고    scopus 로고
    • HClustream: A novel approach for clustering evolving heterogeneous data stream
    • Dec.
    • Yang C, Zhou J. HClustream: A novel approach for clustering evolving heterogeneous data stream. In Proc. the 6th IEEE Int. Conf. Data Mining Workshops, Dec. 2006, pp. 682-688.
    • (2006) Proc the 6th IEEE Int. Conf. Data Mining Workshops , pp. 682-688
    • Yang, C.1    Zhou, J.2
  • 87
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • 10.1007/BF00337288 0466.92002 667889
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69.
    • (1982) Biological Cybernetics , vol.43 , Issue.1 , pp. 59-69
    • Kohonen, T.1
  • 90
    • 84888388073 scopus 로고    scopus 로고
    • An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique
    • 10.1016/j.engappai.2013.04.010
    • Shamshirband S, Anuar N, Kiah M, et al. An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique. Engineering Applications of Artificial Intelligence, 2013, 26(9): 2105-2127.
    • (2013) Engineering Applications of Artificial Intelligence , vol.26 , Issue.9 , pp. 2105-2127
    • Shamshirband, S.1    Anuar, N.2    Kiah, M.3
  • 91
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
    • 10.1023/A:1009745219419
    • Sander J, Ester M, Kriegel H P, Xu X. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998, 2(2): 169-194.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.P.3    Xu, X.4
  • 92
    • 75249106883 scopus 로고    scopus 로고
    • Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease
    • 10.1016/j.neuroimage.2009.11.046
    • Plant C, Teipel S J, Oswald A, et al. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease. NeuroImage, 2010, 50(1): 162-174.
    • (2010) NeuroImage , vol.50 , Issue.1 , pp. 162-174
    • Plant, C.1    Teipel, S.J.2    Oswald, A.3
  • 93
    • 79951516399 scopus 로고    scopus 로고
    • Fast density-based lesion detection in dermoscopy images
    • 10.1016/j.compmedimag.2010.07.007
    • Mete M, Kockara S, Aydin K. Fast density-based lesion detection in dermoscopy images. Computerized Medical Imaging and Graphics, 2011, 35(2): 128-136.
    • (2011) Computerized Medical Imaging and Graphics , vol.35 , Issue.2 , pp. 128-136
    • Mete, M.1    Kockara, S.2    Aydin, K.3
  • 94
    • 84882796639 scopus 로고    scopus 로고
    • Summarization and matching of density-based clusters in streaming environments
    • Yang D, Rundensteiner E A, Ward M O. Summarization and matching of density-based clusters in streaming environments. Proc. VLDB Endow., 2011, 5(2): 121-132.
    • (2011) Proc. VLDB Endow. , vol.5 , Issue.2 , pp. 121-132
    • Yang, D.1    Rundensteiner, E.A.2    Ward, M.O.3
  • 95
    • 84862814748 scopus 로고    scopus 로고
    • Mining spatio-temporal information on microblogging streams using a density-based online clustering method
    • 10.1016/j.eswa.2012.02.136
    • Lee C H. Mining spatio-temporal information on microblogging streams using a density-based online clustering method. Expert Systems with Applications, 2012, 39(10): 9623-9641.
    • (2012) Expert Systems with Applications , vol.39 , Issue.10 , pp. 9623-9641
    • Lee, C.H.1
  • 96
    • 84880066927 scopus 로고    scopus 로고
    • Online clustering for trajectory data stream of moving objects
    • 10.2298/CSIS120723049Y 3039529
    • Yu Y, Wang Q, Wang X, Wang H, He J. Online clustering for trajectory data stream of moving objects. Computer Science and Information Systems, 2013, 10(3): 1293-1317.
    • (2013) Computer Science and Information Systems , vol.10 , Issue.3 , pp. 1293-1317
    • Yu, Y.1    Wang, Q.2    Wang, X.3    Wang, H.4    He, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.