-
1
-
-
84990941766
-
-
Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
-
Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques (3rd edition). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.
-
(2011)
Data Mining: Concepts and Techniques (3rd Edition)
-
-
Han, J.1
Kamber, M.2
Pei, J.3
-
2
-
-
24344498330
-
Mining data streams: A review
-
10.1145/1083784.1083789
-
Gaber M, Zaslavsky A, Krishnaswamy S. Mining data streams: A review. ACM SIGMOD Record, 2005, 34(2): 18-26.
-
(2005)
ACM SIGMOD Record
, vol.34
, Issue.2
, pp. 18-26
-
-
Gaber, M.1
Zaslavsky, A.2
Krishnaswamy, S.3
-
3
-
-
33745434639
-
Density-based clustering over an evolving data stream with noise
-
April
-
Cao F, Ester M, Qian W, Zhou A. Density-based clustering over an evolving data stream with noise. In Proc. the 2006 SIAM Conference on Data Mining, April 2006, pp. 328-339.
-
(2006)
Proc the 2006 SIAM Conference on Data Mining
, pp. 328-339
-
-
Cao, F.1
Ester, M.2
Qian, W.3
Zhou, A.4
-
6
-
-
84880099592
-
Temporal structure learning for clustering massive data streams in real-time
-
April
-
Hahsler M, Dunham M H. Temporal structure learning for clustering massive data streams in real-time. In Proc. the 11th SIAM Conference on Data Mining, April 2011, pp. 664-675.
-
(2011)
Proc the 11th SIAM Conference on Data Mining
, pp. 664-675
-
-
Hahsler, M.1
Dunham, M.H.2
-
7
-
-
0036203413
-
Streaming-data algorithms for high-quality clustering
-
Feb. 26-Mar. 1
-
O Ćallaghan L, Mishra N, Meyerson A, et al. Streaming-data algorithms for high-quality clustering. In Proc. the 18th Int. Conf. Data Engineering, Feb. 26-Mar. 1, 2002, pp. 685-694.
-
(2002)
Proc the 18th Int. Conf. Data Engineering
, pp. 685-694
-
-
Ćallaghan, O.L.1
-
8
-
-
0038205905
-
Requirements for clustering data streams
-
10.1145/507515.507519
-
Barbará D. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 2002, 3(2): 23-27.
-
(2002)
SIGKDD Explorations Newsletter
, vol.3
, Issue.2
, pp. 23-27
-
-
Barbará, D.1
-
9
-
-
0038633423
-
Clustering data streams: Theory and practice
-
10.1109/TKDE.2003.1198387
-
Guha S, Meyerson A, Mishra N, et al. Clustering data streams: Theory and practice. IEEE Trans. Knowledge and Data Engineering, 2003, 15(3): 515-528.
-
(2003)
IEEE Trans. Knowledge and Data Engineering
, vol.15
, Issue.3
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
-
10
-
-
85012236181
-
A framework for clustering evolving data streams
-
Sept.
-
Aggarwal C C, Han J, Wang J, Yu P S. A framework for clustering evolving data streams. In Proc. the 29th International Conference on Very Large Data Bases, Sept. 2003, pp. 81-92.
-
(2003)
Proc the 29th International Conference on Very Large Data Bases
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
11
-
-
84863737078
-
StreamKM++: A clustering algorithm for data streams
-
Jan.
-
Ackermann M R, Lammersen C, Märtens M, Raupach C, Sohler C, Swierkot K. StreamKM++: A clustering algorithm for data streams. In Proc. the 12th Workshop on Algorithm Engineering and Experiments, Jan. 2010, pp. 173-187.
-
(2010)
Proc the 12th Workshop on Algorithm Engineering and Experiments
, pp. 173-187
-
-
Ackermann, M.R.1
Lammersen, C.2
Märtens, M.3
Raupach, C.4
Sohler, C.5
Swierkot, K.6
-
14
-
-
0036042175
-
Models and issues in data stream systems
-
June 2002
-
Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream systems. In Proc. the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, June 2002, pp. 1-16.
-
Proc the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
, pp. 1-16
-
-
Babcock, B.1
Babu, S.2
Datar, M.3
Motwani, R.4
Widom, J.5
-
15
-
-
0004161991
-
-
Upper Saddle River, NJ, USA: Prentice-Hall, Inc
-
Jain A K, Dubes R C. Algorithms for Clustering Data. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.
-
(1988)
Algorithms for Clustering Data
-
-
Jain, A.K.1
Dubes, R.C.2
-
16
-
-
77950369345
-
Data clustering: 50 years beyond K-means
-
10.1016/j.patrec.2009.09.011
-
Jain A K. Data clustering: 50 years beyond K-means. Pattern Recognition Letter, 2010, 31(8): 651-666.
-
(2010)
Pattern Recognition Letter
, vol.31
, Issue.8
, pp. 651-666
-
-
Jain, A.K.1
-
20
-
-
84855684066
-
A comparative study of density-based clustering algorithms on data streams: Micro-clustering approaches
-
Ao S, Castillo O, Huang X (eds.), Springer
-
Amini A, Wah T Y. A comparative study of density-based clustering algorithms on data streams: Micro-clustering approaches. In Lecture Notes in Electrical Engineering 110, Ao S, Castillo O, Huang X (eds.), Springer, 2012, pp. 275-287.
-
(2012)
Lecture Notes in Electrical Engineering
, vol.110
, pp. 275-287
-
-
Amini, A.1
Wah, T.Y.2
-
21
-
-
84870684055
-
A survey of stream clustering algorithms
-
Aggarwal C C, Reddy C (eds.), CRC Press
-
Aggarwal C C. A survey of stream clustering algorithms. In Data Clustering: Algorithms and Applications, Aggarwal C C, Reddy C (eds.), CRC Press, 2013, pp. 457-482.
-
(2013)
Data Clustering: Algorithms and Applications
, pp. 457-482
-
-
Aggarwal, C.C.1
-
24
-
-
0020102027
-
Least squares quantization in PCM
-
10.1109/TIT.1982.1056489 0504.94015 651807
-
Lloyd S P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982, 28(2): 129-137.
-
(1982)
IEEE Transactions on Information Theory
, vol.28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.P.1
-
25
-
-
0034514004
-
Clustering data streams
-
Nov. 2000
-
Guha S, Mishra N, Motwani R, O'Callaghan L. Clustering data streams. In Proc. the 41st Annual Symposium on Foundations of Computer Science, Nov. 2000, pp. 359-366.
-
Proc the 41st Annual Symposium on Foundations of Computer Science
, pp. 359-366
-
-
Guha, S.1
Mishra, N.2
Motwani, R.3
O'Callaghan, L.4
-
27
-
-
0032686723
-
Chameleon: Hierarchical clustering using dynamic modeling
-
10.1109/2.781637
-
Karypis G, Han E, Kumar V. Chameleon: Hierarchical clustering using dynamic modeling. Computer, 1999, 32(8): 68-75.
-
(1999)
Computer
, vol.32
, Issue.8
, pp. 68-75
-
-
Karypis, G.1
Han, E.2
Kumar, V.3
-
28
-
-
80053927938
-
The clustree: Indexing micro-clusters for anytime stream mining
-
10.1007/s10115-010-0342-8
-
Kranen P, Assent I, Baldauf C, Seidl T. The clustree: Indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst., 2011, 29(2): 249-272.
-
(2011)
Knowl. Inf. Syst.
, vol.29
, Issue.2
, pp. 249-272
-
-
Kranen, P.1
Assent, I.2
Baldauf, C.3
Seidl, T.4
-
30
-
-
0034133653
-
Wavecluster: A wavelet-based clustering approach for spatial data in very large databases
-
10.1007/s007780050009
-
Sheikholeslami G, Chatterjee S, Zhang A. Wavecluster: A wavelet-based clustering approach for spatial data in very large databases. The VLDB Journal, 2000, 8(3/4): 289-304.
-
(2000)
The VLDB Journal
, vol.8
, Issue.34
, pp. 289-304
-
-
Sheikholeslami, G.1
Chatterjee, S.2
Zhang, A.3
-
31
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
10.1145/276305.276314
-
Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998, 27(2): 94-105.
-
(1998)
ACM SIGMOD Record
, vol.27
, Issue.2
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
32
-
-
73349087457
-
Stream data clustering based on grid density and attraction
-
Article No. 12
-
Tu L, Chen Y. Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery Data, 2009, 3(3): Article No. 12.
-
(2009)
ACM Transactions on Knowledge Discovery Data
, vol.3
, Issue.3
-
-
Tu, L.1
Chen, Y.2
-
33
-
-
73349121934
-
Density-based clustering of data streams at multiple resolutions
-
Article No. 14
-
Wan L, Ng W K, Dang X H, et al. Density-based clustering of data streams at multiple resolutions. ACM Trans. Knowledge Discovery from Data, 2009, 3(3): Article No. 14.
-
(2009)
ACM Trans. Knowledge Discovery from Data
, vol.3
, Issue.3
-
-
Wan, L.1
Ng, W.K.2
Dang, X.H.3
-
34
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
0364.62022 501537
-
Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 1977, 39(1): 1-38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
36
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Aug.
-
Ester M, Kriegel H, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. the 2nd International Conference on Knowledge Discovery and Data Mining, Aug. 1996, pp. 226-231.
-
(1996)
Proc the 2nd International Conference on Knowledge Discovery and Data Mining
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.2
Sander, J.3
Xu, X.4
-
37
-
-
0347172110
-
Optics: Ordering points to identify the clustering structure
-
10.1145/304181.304187
-
Ankerst M, Breunig M M, Kriegel H P, Sander J. Optics: Ordering points to identify the clustering structure. ACM SIGMOD Record, 1999, 28(2): 49-60.
-
(1999)
ACM SIGMOD Record
, vol.28
, Issue.2
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.P.3
Sander, J.4
-
38
-
-
85140527321
-
An efficient approach to clustering in large multimedia databases with noise
-
Sept.
-
Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with noise. In Proc. the 4th KDD, Sept. 1998, pp. 58-65.
-
(1998)
Proc the 4th KDD
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.A.2
-
40
-
-
43249088014
-
Tracking clusters in evolving data streams over sliding windows
-
10.1007/s10115-007-0070-x
-
Zhou A, Cao F, Qian W, Jin C. Tracking clusters in evolving data streams over sliding windows. Knowledge and Information Systems, 2008, 15(2): 181-214.
-
(2008)
Knowledge and Information Systems
, vol.15
, Issue.2
, pp. 181-214
-
-
Zhou, A.1
Cao, F.2
Qian, W.3
Jin, C.4
-
43
-
-
26944494130
-
An incremental data stream clustering algorithm based on dense units detection
-
May
-
Gao J, Li J, Zhang Z, Tan P N. An incremental data stream clustering algorithm based on dense units detection. In Proc. the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, May 2005, pp. 420-425.
-
(2005)
Proc the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining
, pp. 420-425
-
-
Gao, J.1
Li, J.2
Zhang, Z.3
Tan, P.N.4
-
44
-
-
85136074496
-
A framework for projected clustering of high dimensional data streams
-
Aug. 29-Sept. 3
-
Aggarwal C C, Han J, Wang J, Yu P S. A framework for projected clustering of high dimensional data streams. In Proc. the 30th International Conference on Very Large Data Bases, Volume 30, Aug. 29-Sept. 3, 2004, pp. 852-863.
-
(2004)
Proc the 30th International Conference on Very Large Data Bases
, vol.30
, pp. 852-863
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
45
-
-
22044440960
-
On high dimensional projected clustering of data streams
-
10.1007/s10618-005-0645-7 2145978
-
Aggarwal C C, Han J, Wang J, Yu P S. On high dimensional projected clustering of data streams. Data Mining and Knowledge Discovery, 2005, 10(3): 251-273.
-
(2005)
Data Mining and Knowledge Discovery
, vol.10
, Issue.3
, pp. 251-273
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
46
-
-
1142293244
-
Maintaining variance and k-medians over data stream windows
-
June
-
Babcock B, Datar M, Motwani R, O'Callaghan L. Maintaining variance and k-medians over data stream windows. In Proc. the 22nd ACM SIGMOD-SIGACT-SIGART Symp. Principles of Database Systems, June 2003, pp. 234-243.
-
(2003)
Proc the 22nd ACM SIGMOD-SIGACT-SIGART Symp. Principles of Database Systems
, pp. 234-243
-
-
Babcock, B.1
Datar, M.2
Motwani, R.3
O'Callaghan, L.4
-
47
-
-
78149381013
-
Discovery of frequent patterns in transactional data streams
-
Hameurlain A, Küng J, Wagner R, et al. (eds.), Springer Berlin/Heidelberg
-
Ng W, Dash M. Discovery of frequent patterns in transactional data streams. In Lecture Notes in Computer Science 6380, Hameurlain A, Küng J, Wagner R, et al. (eds.), Springer Berlin/Heidelberg, 2010, pp. 1-30.
-
(2010)
Lecture Notes in Computer Science
, vol.6380
, pp. 1-30
-
-
Ng, W.1
Dash, M.2
-
48
-
-
0022026217
-
Random sampling with a reservoir
-
10.1145/3147.3165 0562.68028 793056
-
Vitter J S. Random sampling with a reservoir. ACM Trans. Math. Softw., 1985, 11(1): 37-57.
-
(1985)
ACM Trans. Math. Softw.
, vol.11
, Issue.1
, pp. 37-57
-
-
Vitter, J.S.1
-
50
-
-
51849127627
-
A survey of synopsis construction in data streams
-
Aggarwal C C (ed.), Springer
-
Aggarwal C C, Yu P S. A survey of synopsis construction in data streams. In Advances in Database Systems 31, Aggarwal C C (ed.), Springer, 2007, pp. 169-207.
-
(2007)
Advances in Database Systems
, vol.31
, pp. 169-207
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
52
-
-
0037957085
-
One-pass wavelet decompositions of data streams
-
10.1109/TKDE.2003.1198389
-
Gilbert A C, Kotidis Y, Muthukrishnan S, Strauss M J. One-pass wavelet decompositions of data streams. IEEE Trans. Knowl. and Data Eng., 2003, 15(3): 541-554.
-
(2003)
IEEE Trans. Knowl. and Data Eng.
, vol.15
, Issue.3
, pp. 541-554
-
-
Gilbert, A.C.1
Kotidis, Y.2
Muthukrishnan, S.3
Strauss, M.J.4
-
54
-
-
0242698166
-
KDD-cup 99: Knowledge discovery in a charitable organization's donor database
-
10.1145/846183.846204
-
Rosset S, Inger A. KDD-cup 99: Knowledge discovery in a charitable organization's donor database. SIGKDD Explorations Newsletter, 2000, 1(2): 85-90.
-
(2000)
SIGKDD Explorations Newsletter
, vol.1
, Issue.2
, pp. 85-90
-
-
Rosset, S.1
Inger, A.2
-
55
-
-
0001518855
-
A general statistical framework for assessing categorical clustering in free recall
-
10.1037/0033-2909.83.6.1072
-
Hubert L J, Levin J R. A general statistical framework for assessing categorical clustering in free recall. Psychological Bulletin, 1976, 83(6): 1072-1080.
-
(1976)
Psychological Bulletin
, vol.83
, Issue.6
, pp. 1072-1080
-
-
Hubert, L.J.1
Levin, J.R.2
-
58
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
10.1080/01621459.1971.10482356
-
Rand W M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 1971, 66(336): 846-850.
-
(1971)
Journal of the American Statistical Association
, vol.66
, Issue.336
, pp. 846-850
-
-
Rand, W.M.1
-
59
-
-
3543085722
-
Empirical and theoretical comparisons of selected criterion functions for document clustering
-
10.1023/B:MACH.0000027785.44527.d6 1089.68615
-
Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 2004, 55(3): 311-331.
-
(2004)
Machine Learning
, vol.55
, Issue.3
, pp. 311-331
-
-
Zhao, Y.1
Karypis, G.2
-
60
-
-
2142794241
-
-
Technical Report National Research Institute for Mathematics and Computer Science, Stichting Mathematisch Centrum, Netherlands
-
Dongen S. Performance criteria for graph clustering and Markov cluster experiments. Technical Report, National Research Institute for Mathematics and Computer Science, Stichting Mathematisch Centrum, Netherlands, 2000.
-
(2000)
Performance Criteria for Graph Clustering and Markov Cluster Experiments
-
-
Dongen, S.1
-
64
-
-
0000228352
-
A Monte Carlo study of thirty internal criterion measures for cluster analysis
-
10.1007/BF02293899 0472.62070 655020
-
Milligan G. A Monte Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika, 1981, 46(2): 187-199.
-
(1981)
Psychometrika
, vol.46
, Issue.2
, pp. 187-199
-
-
Milligan, G.1
-
66
-
-
34548080780
-
-
New York, NY, USA: Cambridge University Press
-
Manning C D, Raghavan P, Schtze H. Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press, 2008.
-
(2008)
Introduction to Information Retrieval
-
-
Manning, C.D.1
Raghavan, P.2
Schtze, H.3
-
67
-
-
84872422874
-
A single pass algorithm for clustering evolving data streams based on swarm intelligence
-
10.1007/s10618-011-0242-x 3009771
-
Forestiero A, Pizzuti C, Spezzano G. A single pass algorithm for clustering evolving data streams based on swarm intelligence. Data Mining and Knowledge Discovery, 2013, 26(1): 1-26.
-
(2013)
Data Mining and Knowledge Discovery
, vol.26
, Issue.1
, pp. 1-26
-
-
Forestiero, A.1
Pizzuti, C.2
Spezzano, G.3
-
68
-
-
80052404172
-
MOA: Massive online analysis, a framework for stream classification and clustering
-
Bifet A, Holmes G, Pfahringer B, et al. MOA: Massive online analysis, a framework for stream classification and clustering. Journal of Machine Learning Research, 2010, 11: 44-50.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 44-50
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
-
70
-
-
79951737370
-
Clustering performance on evolving data streams: Assessing algorithms and evaluation measures within MOA
-
Dec. 2010
-
Kranen P, Kremer H, Jansen T, et al. Clustering performance on evolving data streams: Assessing algorithms and evaluation measures within MOA. In Proc. the IEEE Int. Conf. Data Mining Workshops, Dec. 2010, pp. 1400-1403.
-
Proc the IEEE Int. Conf. Data Mining Workshops
, pp. 1400-1403
-
-
Kranen, P.1
Kremer, H.2
Jansen, T.3
-
76
-
-
70449747527
-
A density-based clustering over evolving heterogeneous data stream
-
Aug.
-
Lin J, Lin H. A density-based clustering over evolving heterogeneous data stream. In Proc. the 2nd Int. Colloquium on Computing, Communication, Control, and Management, Aug. 2009, pp. 275-277.
-
(2009)
Proc the 2nd Int. Colloquium on Computing, Communication, Control, and Management
, pp. 275-277
-
-
Lin, J.1
Lin, H.2
-
77
-
-
84864911201
-
SOStream: Self organizing density-based clustering over data stream
-
Perner P (ed.), Springer Berlin Heidelberg
-
Isaksson C, Dunham M, Hahsler M. SOStream: Self organizing density-based clustering over data stream. In Lecture Notes in Computer Science 7376, Perner P (ed.), Springer Berlin Heidelberg, 2012, pp. 264-278.
-
(2012)
Lecture Notes in Computer Science
, vol.7376
, pp. 264-278
-
-
Isaksson, C.1
Dunham, M.2
Hahsler, M.3
-
79
-
-
84867617125
-
Density-based projected clustering of data streams
-
Sept. 2012
-
Hassani M, Spaus P, Gaber M M, Seidl T. Density-based projected clustering of data streams. In Proc. the 6th Int. Conf. Scalable Uncertainty Management, Sept. 2012, pp. 311-324.
-
Proc the 6th Int. Conf. Scalable Uncertainty Management
, pp. 311-324
-
-
Hassani, M.1
Spaus, P.2
Gaber, M.M.3
Seidl, T.4
-
81
-
-
79952413308
-
Clustering over data streams based on grid density and index tree
-
10.4156/jcit.vol6.issue1.11
-
Ren J, Cai B, Hu C. Clustering over data streams based on grid density and index tree. Journal of Convergence Information Technology, 2011, 6(1): 83-93.
-
(2011)
Journal of Convergence Information Technology
, vol.6
, Issue.1
, pp. 83-93
-
-
Ren, J.1
Cai, B.2
Hu, C.3
-
85
-
-
38049081595
-
C-DBSCAN: Density-based clustering with constraints
-
May
-
Ruiz C, Spiliopoulou M, Menasalvas E. C-DBSCAN: Density-based clustering with constraints. In Proc. the 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, May 2007, pp. 216-223.
-
(2007)
Proc the 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing
, pp. 216-223
-
-
Ruiz, C.1
Spiliopoulou, M.2
Menasalvas, E.3
-
86
-
-
34548637278
-
HClustream: A novel approach for clustering evolving heterogeneous data stream
-
Dec.
-
Yang C, Zhou J. HClustream: A novel approach for clustering evolving heterogeneous data stream. In Proc. the 6th IEEE Int. Conf. Data Mining Workshops, Dec. 2006, pp. 682-688.
-
(2006)
Proc the 6th IEEE Int. Conf. Data Mining Workshops
, pp. 682-688
-
-
Yang, C.1
Zhou, J.2
-
87
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
10.1007/BF00337288 0466.92002 667889
-
Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69.
-
(1982)
Biological Cybernetics
, vol.43
, Issue.1
, pp. 59-69
-
-
Kohonen, T.1
-
88
-
-
19544386608
-
Density connected clustering with local subspace preferences
-
Nov.
-
Bohm C, Kailing K, Kriegel H P, Kroger P. Density connected clustering with local subspace preferences. In Proc. the 4th IEEE Int. Conf. Data Mining, Nov. 2004, pp. 27-34.
-
(2004)
Proc the 4th IEEE Int. Conf. Data Mining
, pp. 27-34
-
-
Bohm, C.1
Kailing, K.2
Kriegel, H.P.3
Kroger, P.4
-
90
-
-
84888388073
-
An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique
-
10.1016/j.engappai.2013.04.010
-
Shamshirband S, Anuar N, Kiah M, et al. An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique. Engineering Applications of Artificial Intelligence, 2013, 26(9): 2105-2127.
-
(2013)
Engineering Applications of Artificial Intelligence
, vol.26
, Issue.9
, pp. 2105-2127
-
-
Shamshirband, S.1
Anuar, N.2
Kiah, M.3
-
91
-
-
22044455069
-
Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
-
10.1023/A:1009745219419
-
Sander J, Ester M, Kriegel H P, Xu X. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998, 2(2): 169-194.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 169-194
-
-
Sander, J.1
Ester, M.2
Kriegel, H.P.3
Xu, X.4
-
92
-
-
75249106883
-
Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease
-
10.1016/j.neuroimage.2009.11.046
-
Plant C, Teipel S J, Oswald A, et al. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease. NeuroImage, 2010, 50(1): 162-174.
-
(2010)
NeuroImage
, vol.50
, Issue.1
, pp. 162-174
-
-
Plant, C.1
Teipel, S.J.2
Oswald, A.3
-
93
-
-
79951516399
-
Fast density-based lesion detection in dermoscopy images
-
10.1016/j.compmedimag.2010.07.007
-
Mete M, Kockara S, Aydin K. Fast density-based lesion detection in dermoscopy images. Computerized Medical Imaging and Graphics, 2011, 35(2): 128-136.
-
(2011)
Computerized Medical Imaging and Graphics
, vol.35
, Issue.2
, pp. 128-136
-
-
Mete, M.1
Kockara, S.2
Aydin, K.3
-
94
-
-
84882796639
-
Summarization and matching of density-based clusters in streaming environments
-
Yang D, Rundensteiner E A, Ward M O. Summarization and matching of density-based clusters in streaming environments. Proc. VLDB Endow., 2011, 5(2): 121-132.
-
(2011)
Proc. VLDB Endow.
, vol.5
, Issue.2
, pp. 121-132
-
-
Yang, D.1
Rundensteiner, E.A.2
Ward, M.O.3
-
95
-
-
84862814748
-
Mining spatio-temporal information on microblogging streams using a density-based online clustering method
-
10.1016/j.eswa.2012.02.136
-
Lee C H. Mining spatio-temporal information on microblogging streams using a density-based online clustering method. Expert Systems with Applications, 2012, 39(10): 9623-9641.
-
(2012)
Expert Systems with Applications
, vol.39
, Issue.10
, pp. 9623-9641
-
-
Lee, C.H.1
-
96
-
-
84880066927
-
Online clustering for trajectory data stream of moving objects
-
10.2298/CSIS120723049Y 3039529
-
Yu Y, Wang Q, Wang X, Wang H, He J. Online clustering for trajectory data stream of moving objects. Computer Science and Information Systems, 2013, 10(3): 1293-1317.
-
(2013)
Computer Science and Information Systems
, vol.10
, Issue.3
, pp. 1293-1317
-
-
Yu, Y.1
Wang, Q.2
Wang, X.3
Wang, H.4
He, J.5
|