-
1
-
-
67349178842
-
Individual-based modeling of the spread of pine wilt disease: Vector beetle dispersal and the Allee effect
-
2-s2.0-67349178842 10.1007/s10144-009-0145-5
-
Takasu F., Individual-based modeling of the spread of pine wilt disease: vector beetle dispersal and the Allee effect. Population Ecology 2009 51 3 399 409 2-s2.0-67349178842 10.1007/s10144-009-0145-5
-
(2009)
Population Ecology
, vol.51
, Issue.3
, pp. 399-409
-
-
Takasu, F.1
-
2
-
-
0033491536
-
First report of Bursaphelenchus xylophilus in Portugal and in Europe
-
Mota M. M., Braasch H., Bravo M. A., Penas A. C., Burgermeister W., Metge K., Sousa E., First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1999 1 7-8 727 734 2-s2.0-0033491536 (Pubitemid 30124662)
-
(1999)
Nematology
, vol.1
, Issue.7-8
, pp. 727-734
-
-
Mota, M.M.1
Braasch, H.2
Bravo, M.A.3
Penas, A.C.4
Burgermeister, W.5
Metge, K.6
Sousa, E.7
-
3
-
-
84900246506
-
-
New York, NY, USA Springer
-
Zhao B. G., Futai K., Sutherland J. R., Takeuchi Y., Pine Wilt Disease 2008 New York, NY, USA Springer
-
(2008)
Pine Wilt Disease
-
-
Zhao, B.G.1
Futai, K.2
Sutherland, J.R.3
Takeuchi, Y.4
-
4
-
-
84872612382
-
Global dynamics of a pine wilt disease transmission model with nonlinear incidence rates
-
10.1016/j.apm.2012.09.042 MR3020593 ZBL1270.91035
-
Lee K. S., Kim D., Global dynamics of a pine wilt disease transmission model with nonlinear incidence rates. Applied Mathematical Modelling 2013 37 6 4561 4569 10.1016/j.apm.2012.09.042 MR3020593 ZBL1270.91035
-
(2013)
Applied Mathematical Modelling
, vol.37
, Issue.6
, pp. 4561-4569
-
-
Lee, K.S.1
Kim, D.2
-
5
-
-
84876583197
-
Analysis of the mathematical model for the spread of pine wilt disease
-
10.1155/2013/184054 184054
-
Shi X., Song G., Analysis of the mathematical model for the spread of pine wilt disease. Journal of Applied Mathematics 2013 2013 10 10.1155/2013/184054 184054
-
(2013)
Journal of Applied Mathematics
, vol.2013
, pp. 10
-
-
Shi, X.1
Song, G.2
-
6
-
-
0018041874
-
A generalization of the Kermack-McKendrick deterministic epidemic model
-
DOI 10.1016/0025-5564(78)90006-8
-
Capasso V., Serio G., A generalization of the Kermack-McKendrick deterministic epidemic model. Mathematical Biosciences 1978 42 1-2 43 61 10.1016/0025-5564(78)90006-8 MR529097 ZBL0398.92026 (Pubitemid 9117153)
-
(1978)
Mathematical Biosciences
, vol.42
, Issue.1-2
, pp. 43-61
-
-
Capasso, V.1
Serio, G.2
-
7
-
-
67650786314
-
Global dynamics of a dengue epidemic mathematical model
-
10.1016/j.chaos.2009.03.130 MR2559889 ZBL1198.34075
-
Cai L., Guo S., Li X., Ghosh M., Global dynamics of a dengue epidemic mathematical model. Chaos, Solitons & Fractals 2009 42 4 2297 2304 10.1016/j.chaos.2009.03.130 MR2559889 ZBL1198.34075
-
(2009)
Chaos, Solitons & Fractals
, vol.42
, Issue.4
, pp. 2297-2304
-
-
Cai, L.1
Guo, S.2
Li, X.3
Ghosh, M.4
-
8
-
-
78049284351
-
Global analysis of a vector-host epidemic model with nonlinear incidences
-
10.1016/j.amc.2010.09.028 MR2733796 ZBL1202.92075
-
Cai L.-M., Li X.-Z., Global analysis of a vector-host epidemic model with nonlinear incidences. Applied Mathematics and Computation 2010 217 7 3531 3541 10.1016/j.amc.2010.09.028 MR2733796 ZBL1202.92075
-
(2010)
Applied Mathematics and Computation
, vol.217
, Issue.7
, pp. 3531-3541
-
-
Cai, L.-M.1
Li, X.-Z.2
-
9
-
-
0023070210
-
Dynamical behavior of epidemiological models with nonlinear incidence rates
-
10.1007/BF00277162 MR908379 ZBL0621.92014
-
Liu W. M., Hethcote H. W., Levin S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates. Journal of Mathematical Biology 1987 25 4 359 380 10.1007/BF00277162 MR908379 ZBL0621.92014
-
(1987)
Journal of Mathematical Biology
, vol.25
, Issue.4
, pp. 359-380
-
-
Liu, W.M.1
Hethcote, H.W.2
Levin, S.A.3
-
10
-
-
84870030340
-
Stability analysis and optimal control of a vector-borne disease with nonlinear incidence
-
10.1155/2012/595487 595487 MR2993327 ZBL1253.93090
-
Ozair M., Lashari A. A., Jung I. H., Okosun K. O., Stability analysis and optimal control of a vector-borne disease with nonlinear incidence. Discrete Dynamics in Nature and Society 2012 2012 21 10.1155/2012/595487 595487 MR2993327 ZBL1253.93090
-
(2012)
Discrete Dynamics in Nature and Society
, vol.2012
, pp. 21
-
-
Ozair, M.1
Lashari, A.A.2
Jung, I.H.3
Okosun, K.O.4
-
11
-
-
0033089022
-
A model for dengue disease with variable human population
-
10.1007/s002850050147 MR1684881 ZBL0981.92016
-
Esteva L., Vargas C., A model for dengue disease with variable human population. Journal of Mathematical Biology 1999 38 3 220 240 10.1007/s002850050147 MR1684881 ZBL0981.92016
-
(1999)
Journal of Mathematical Biology
, vol.38
, Issue.3
, pp. 220-240
-
-
Esteva, L.1
Vargas, C.2
-
12
-
-
0037429355
-
Dynamical behavior of an epidemic model with a nonlinear incidence rate
-
DOI 10.1016/S0022-0396(02)00089-X, PII S002203960200089X
-
Xiao D., Ruan S., Global analysis of an epidemic model with nonmonotone incidence rate. Journal of Differential Equations 2003 188 135 163 (Pubitemid 36233149)
-
(2003)
Journal of Differential Equations
, vol.188
, Issue.1
, pp. 135-163
-
-
Ruan, S.1
Wang, W.2
-
13
-
-
0037429355
-
Dynamical behavior of an epidemic model with a nonlinear incidence rate
-
DOI 10.1016/S0022-0396(02)00089-X, PII S002203960200089X
-
Ruan S., Wang W., Dynamical behavior of an epidemic model with a nonlinear incidence rate. Journal of Differential Equations 2003 188 1 135 163 10.1016/S0022-0396(02)00089-X MR1954511 ZBL1028.34046 (Pubitemid 36233149)
-
(2003)
Journal of Differential Equations
, vol.188
, Issue.1
, pp. 135-163
-
-
Ruan, S.1
Wang, W.2
-
14
-
-
25144476559
-
Non-linear incidence and stability of infectious disease models
-
DOI 10.1093/imammb/dqi001
-
Korobeinikov A., Maini P. K., Non-linear incidence and stability of infectious disease models. Mathematical Medicine and Biology 2005 22 2 113 128 2-s2.0-25144476559 10.1093/imammb/dqi001 (Pubitemid 41511337)
-
(2005)
Mathematical Medicine and Biology
, vol.22
, Issue.2
, pp. 113-128
-
-
Korobeinikov, A.1
Maini, P.K.2
-
15
-
-
78649989180
-
On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate
-
10.1016/j.amc.2010.10.007 MR2739642 ZBL1203.92049
-
Buonomo B., Rionero S., On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate. Applied Mathematics and Computation 2010 217 8 4010 4016 10.1016/j.amc.2010.10.007 MR2739642 ZBL1203.92049
-
(2010)
Applied Mathematics and Computation
, vol.217
, Issue.8
, pp. 4010-4016
-
-
Buonomo, B.1
Rionero, S.2
-
16
-
-
0030544879
-
A geometric approach to global-stability problems
-
10.1137/S0036141094266449 MR1393426 ZBL0873.34041
-
Li M. Y., Muldowney J. S., A geometric approach to global-stability problems. SIAM Journal on Mathematical Analysis 1996 27 4 1070 1083 10.1137/S0036141094266449 MR1393426 ZBL0873.34041
-
(1996)
SIAM Journal on Mathematical Analysis
, vol.27
, Issue.4
, pp. 1070-1083
-
-
Li, M.Y.1
Muldowney, J.S.2
-
17
-
-
33749531828
-
-
New York, NY, USA Marcel Dekker Monographs and Textbooks in Pure and Applied Mathematics MR984861
-
Lakshmikantham V., Leela S., Martynyuk A. A., Stability Analysis of Nonlinear Systems 1989 125 New York, NY, USA Marcel Dekker xii+315 Monographs and Textbooks in Pure and Applied Mathematics MR984861
-
(1989)
Stability Analysis of Nonlinear Systems
, vol.125
-
-
Lakshmikantham, V.1
Leela, S.2
Martynyuk, A.A.3
-
18
-
-
77952672921
-
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations
-
10.1007/BF00173267 MR1175102 ZBL0761.34039
-
Thieme H. R., Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations. Journal of Mathematical Biology 1992 30 7 755 763 10.1007/BF00173267 MR1175102 ZBL0761.34039
-
(1992)
Journal of Mathematical Biology
, vol.30
, Issue.7
, pp. 755-763
-
-
Thieme, H.R.1
-
19
-
-
0036845274
-
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
-
DOI 10.1016/S0025-5564(02)00108-6, PII S0025556402001086
-
van den Driessche P., Watmough J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 2002 180 29 48. John A. Jacquez memorial volume 10.1016/S0025-5564(02)00108-6 MR1950747 ZBL1015.92036 (Pubitemid 35304346)
-
(2002)
Mathematical Biosciences
, vol.180
, pp. 29-48
-
-
Van Den Driessche, P.1
Watmough, J.2
-
22
-
-
84880990802
-
Compound matrices and ordinary differential equations
-
10.1216/rmjm/1181073047 MR1096556 ZBL0725.34049
-
Muldowney J. S., Compound matrices and ordinary differential equations. The Rocky Mountain Journal of Mathematics 1990 20 4 857 872 10.1216/rmjm/ 1181073047 MR1096556 ZBL0725.34049
-
(1990)
The Rocky Mountain Journal of Mathematics
, vol.20
, Issue.4
, pp. 857-872
-
-
Muldowney, J.S.1
-
23
-
-
0028817626
-
Global stability for the SEIR model in epidemiology
-
10.1016/0025-5564(95)92756-5 MR1315259 ZBL0821.92022
-
Li M. Y., Muldowney J. S., Global stability for the SEIR model in epidemiology. Mathematical Biosciences 1995 125 2 155 164 10.1016/0025-5564(95) 92756-5 MR1315259 ZBL0821.92022
-
(1995)
Mathematical Biosciences
, vol.125
, Issue.2
, pp. 155-164
-
-
Li, M.Y.1
Muldowney, J.S.2
-
24
-
-
24944470951
-
Global Analysis of Two Tuberculosis Models
-
DOI 10.1023/B:JODY.0000041283.66784.3e
-
McCluskey C. C., van den Driessche P., Global analysis of two tuberculosis models. Journal of Dynamics and Differential Equations 2004 16 1 139 166 10.1023/B:JODY.0000041283.66784.3e MR2093838 ZBL1056.92052 (Pubitemid 39217525)
-
(2004)
Journal of Dynamics and Differential Equations
, vol.16
, Issue.1
, pp. 139-166
-
-
McCluskey, C.C.1
Driessche, P.V.2
-
25
-
-
84968495017
-
Uniformly persistent semidynamical systems
-
10.2307/2047471 MR958053 ZBL0667.34065
-
Fonda A., Uniformly persistent semidynamical systems. Proceedings of the American Mathematical Society 1988 104 1 111 116 10.2307/2047471 MR958053 ZBL0667.34065
-
(1988)
Proceedings of the American Mathematical Society
, vol.104
, Issue.1
, pp. 111-116
-
-
Fonda, A.1
-
26
-
-
84873258483
-
Stability and bifurcation analysis of a vector-bias model of malaria transmission
-
10.1016/j.mbs.2012.12.001 MR3033469 ZBL06143711
-
Buonomo B., Vargas-De-León C., Stability and bifurcation analysis of a vector-bias model of malaria transmission. Mathematical Biosciences 2013 242 1 59 67 10.1016/j.mbs.2012.12.001 MR3033469 ZBL06143711
-
(2013)
Mathematical Biosciences
, vol.242
, Issue.1
, pp. 59-67
-
-
Buonomo, B.1
Vargas-De-León, C.2
-
27
-
-
70349392719
-
A host-vector model for malaria with infective immigrants
-
10.1016/j.jmaa.2009.09.005 MR2567289 ZBL1176.92045
-
Tumwiine J., Mugisha J. Y. T., Luboobi L. S., A host-vector model for malaria with infective immigrants. Journal of Mathematical Analysis and Applications 2010 361 1 139 149 10.1016/j.jmaa.2009.09.005 MR2567289 ZBL1176.92045
-
(2010)
Journal of Mathematical Analysis and Applications
, vol.361
, Issue.1
, pp. 139-149
-
-
Tumwiine, J.1
Mugisha, J.Y.T.2
Luboobi, L.S.3
|