메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1285-1293

SEED: A framework for extracting social events from press news

Author keywords

Information extraction; Named entity recognition; Relation extraction; Social event discovery

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; INFORMATION RETRIEVAL; NATURAL LANGUAGE PROCESSING SYSTEMS; PRESSES (MACHINE TOOLS);

EID: 84893117108     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (26)
  • 1
    • 0033652943 scopus 로고    scopus 로고
    • Snowball: Extracting relations from large plain-text collections
    • ACM
    • E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text collections. In DL '00, pages 85-94. ACM, 2000.
    • (2000) DL '00 , pp. 85-94
    • Agichtein, E.1    Gravano, L.2
  • 4
    • 84956968949 scopus 로고    scopus 로고
    • Extracting patterns and relations from the world wide web
    • S. Brin. Extracting patterns and relations from the world wide web. The World Wide Web and Databases, pages 172-183, 1999.
    • (1999) The World Wide Web and Databases , pp. 172-183
    • Brin, S.1
  • 6
    • 80053262847 scopus 로고    scopus 로고
    • A shortest path dependency kernel for relation extraction
    • Association for Computational Linguistics
    • R. C. Bunescu and R. J. Mooney. A shortest path dependency kernel for relation extraction. In HLT/EMNLP '05, pages 724-731. Association for Computational Linguistics, 2005.
    • (2005) HLT/EMNLP '05 , pp. 724-731
    • Bunescu, R.C.1    Mooney, R.J.2
  • 7
    • 2342598419 scopus 로고    scopus 로고
    • Bottom-up relational learning of pattern matching rules for information extraction
    • M. E. Califf and R. J. Mooney. Bottom-up relational learning of pattern matching rules for information extraction. Journal of Machine Learning Research, 4:177-210, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 177-210
    • Califf, M.E.1    Mooney, R.J.2
  • 8
    • 85111040505 scopus 로고    scopus 로고
    • Gate: An architecture for development of robust hlt applications
    • Association for Computational Linguistics
    • H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate: an architecture for development of robust hlt applications. In ACL '02, pages 168-175. Association for Computational Linguistics, 2002.
    • (2002) ACL '02 , pp. 168-175
    • Cunningham, H.1    Maynard, D.2    Bontcheva, K.3    Tablan, V.4
  • 9
    • 79955785333 scopus 로고    scopus 로고
    • Analysis of a probabilistic model of redundancy in unsupervised information extraction
    • Elsevier Science Publishers Ltd
    • D. Downey, O. Etzioni, and S. Soderland. Analysis of a probabilistic model of redundancy in unsupervised information extraction. Artificial Intelligence, 174(11):726-748. Elsevier Science Publishers Ltd., 2010.
    • (2010) Artificial Intelligence , vol.174 , Issue.11 , pp. 726-748
    • Downey, D.1    Etzioni, O.2    Soderland, S.3
  • 11
    • 80052134059 scopus 로고    scopus 로고
    • Collective entity linking in web text: A graph-based method
    • ACM
    • X. Han, L. Sun, and J. Zhao. Collective entity linking in web text: A graph-based method. In SIGIR '11, pages 765-774. ACM, 2011.
    • (2011) SIGIR '11 , pp. 765-774
    • Han, X.1    Sun, L.2    Zhao, J.3
  • 12
    • 0032309862 scopus 로고    scopus 로고
    • Generating finite-state transducers for semi-structured data extraction from the web
    • Elsevier Science Publishers Ltd
    • C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for semi-structured data extraction from the web. Information Systems, 23(9):521-538. Elsevier Science Publishers Ltd., 1998.
    • (1998) Information Systems , vol.23 , Issue.9 , pp. 521-538
    • Hsu, C.-N.1    Dung, M.-T.2
  • 13
    • 85007392626 scopus 로고    scopus 로고
    • Named entity recognition in Indian languages using gazetteer method and hidden Markov model: A hybrid approach
    • March
    • N. Jahan, S. Morwal, and D. Chopra. Named entity recognition in indian languages using gazetteer method and hidden markov model: A hybrid approach. IJCSET, March 2012.
    • (2012) IJCSET
    • Jahan, N.1    Morwal, S.2    Chopra, D.3
  • 14
    • 85140744814 scopus 로고    scopus 로고
    • Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations
    • Association for Computational Linguistics
    • N. Kambhatla. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations. In ACL '04, page 22. Association for Computational Linguistics, 2004.
    • (2004) ACL '04 , pp. 22
    • Kambhatla, N.1
  • 15
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • June
    • J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML, June 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.3
  • 17
    • 1042264823 scopus 로고    scopus 로고
    • A comparison of algorithms for maximum entropy parameter estimation
    • Association for Computational Linguistics
    • R. Malouf et al. A comparison of algorithms for maximum entropy parameter estimation. In COLING '02, pages 1-7. Association for Computational Linguistics, 2002.
    • (2002) COLING '02 , pp. 1-7
    • Malouf, R.1
  • 18
    • 8344238020 scopus 로고    scopus 로고
    • Named entity recognition from diverse text types
    • Association for Computational Linguistics
    • D. Maynard, V. Tablan, C. Ursu, H. Cunningham, and Y. Wilks. Named entity recognition from diverse text types. In RANLP '01, pages 257-274. Association for Computational Linguistics, 2001.
    • (2001) RANLP '01 , pp. 257-274
    • Maynard, D.1    Tablan, V.2    Ursu, C.3    Cunningham, H.4    Wilks, Y.5
  • 19
    • 42149105599 scopus 로고    scopus 로고
    • Rapport technique, Department of Computer and Information Science-University of Pennsylvania
    • R. McDonald. Extracting relations from unstructured text. Rapport technique, Department of Computer and Information Science-University of Pennsylvania, 2005.
    • (2005) Extracting Relations from Unstructured Text
    • Mcdonald, R.1
  • 20
    • 57449088306 scopus 로고    scopus 로고
    • Wikify!: Linking documents to encyclopedic knowledge
    • ACM
    • R. Mihalcea and A. Csomai. Wikify!: linking documents to encyclopedic knowledge. In CIKM '07, pages 233-242. ACM, 2007.
    • (2007) CIKM '07 , pp. 233-242
    • Mihalcea, R.1    Csomai, A.2
  • 21
    • 84912555096 scopus 로고    scopus 로고
    • Named entity recognition without gazetteers
    • Association for Computational Linguistics
    • A. Mikheev, M. Moens, and C. Grover. Named entity recognition without gazetteers. In EACL '99, pages 1-8. Association for Computational Linguistics, 1999.
    • (1999) EACL '99 , pp. 1-8
    • Mikheev, A.1    Moens, M.2    Grover, C.3
  • 23
    • 0032624184 scopus 로고    scopus 로고
    • Learning information extraction rules for semi-structured and free text
    • Kluwer Academic Publishers
    • S. Soderland. Learning information extraction rules for semi-structured and free text. Machine Learning, 34(1):233-272. Kluwer Academic Publishers, 1999.
    • (1999) Machine Learning , vol.34 , Issue.1 , pp. 233-272
    • Soderland, S.1
  • 24
    • 31844438834 scopus 로고    scopus 로고
    • Learning structured prediction models: A large margin approach
    • ACM
    • B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction models: A large margin approach. In ML '05, pages 896-903. ACM, 2005.
    • (2005) ML '05 , pp. 896-903
    • Taskar, B.1    Chatalbashev, V.2    Koller, D.3    Guestrin, C.4
  • 25
    • 85141919230 scopus 로고
    • Unsupervised word sense disambiguation rivaling supervised methods
    • Association for Computational Linguistics
    • D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In ACL '95, pages 189-196. Association for Computational Linguistics, 1995.
    • (1995) ACL '95 , pp. 189-196
    • Yarowsky, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.