-
2
-
-
73249139676
-
On the concept of solution for fractional differential equations with uncertainty
-
Agarwal R.P., Lakshmikantham V., Nieto J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal 2010, 72:2859-2862.
-
(2010)
Nonlinear Anal
, vol.72
, pp. 2859-2862
-
-
Agarwal, R.P.1
Lakshmikantham, V.2
Nieto, J.J.3
-
4
-
-
84878944822
-
No violation of the Leibniz rule. No fractional derivative
-
Tarasov V.E. No violation of the Leibniz rule. No fractional derivative. Commun Nonlinear Sci Numer Simul 2013, 18(11):2945-2948.
-
(2013)
Commun Nonlinear Sci Numer Simul
, vol.18
, Issue.11
, pp. 2945-2948
-
-
Tarasov, V.E.1
-
5
-
-
84878926135
-
Initial value problems for arbitrary order fractional differential equations with delay
-
Yang Zhihui, Cao Jinde Initial value problems for arbitrary order fractional differential equations with delay. Commun Nonlinear Sci Numer Simul 2013, 18(11):2993-3005.
-
(2013)
Commun Nonlinear Sci Numer Simul
, vol.18
, Issue.11
, pp. 2993-3005
-
-
Yang, Z.1
Cao, J.2
-
6
-
-
0003797958
-
Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
-
Academic Press, San Diego
-
Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering 1999, vol. 198. Academic Press, San Diego.
-
(1999)
Mathematics in science and engineering
, vol.198
-
-
Podlubny, I.1
-
9
-
-
70350367184
-
Fractional calculus in viscoelasticity: an experimental study
-
Meral F.C., Royston T.J., Magi R. Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul 2010, 15(4):939-945.
-
(2010)
Commun Nonlinear Sci Numer Simul
, vol.15
, Issue.4
, pp. 939-945
-
-
Meral, F.C.1
Royston, T.J.2
Magi, R.3
-
10
-
-
0030464353
-
Fractional relaxation-oscillation and fractional diffusion-wave phenomena
-
Mainardi Francesco Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7(9):1461-1477.
-
(1996)
Chaos Solitons Fractals
, vol.7
, Issue.9
, pp. 1461-1477
-
-
Mainardi, F.1
-
13
-
-
84865638623
-
Modified fractional Euler method for solving fuzzy fractional initial value problem
-
Mazandarani M., Kamyad A.V. Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun Nonlinear Sci Numer Simul 2013, 18:12-21.
-
(2013)
Commun Nonlinear Sci Numer Simul
, vol.18
, pp. 12-21
-
-
Mazandarani, M.1
Kamyad, A.V.2
-
14
-
-
84878639673
-
Existence and uniqueness results for fractional differential equations with uncertainty
-
Salahshour S., Allahviranloo T., Abbasbandy S., Baleanu D. Existence and uniqueness results for fractional differential equations with uncertainty. Adv Differ Equ 2012, 112. 10.1186/1687-1847-2012-112.
-
(2012)
Adv Differ Equ
, vol.112
-
-
Salahshour, S.1
Allahviranloo, T.2
Abbasbandy, S.3
Baleanu, D.4
-
15
-
-
0016458950
-
The concept of a linguistic variable and its application to approximate reasoning-1
-
Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning-1. Inf Sci 1975, 8:199-249.
-
(1975)
Inf Sci
, vol.8
, pp. 199-249
-
-
Zadeh, L.A.1
-
16
-
-
84885174014
-
Differentiability of type-2 fuzzy number-valued Functions
-
Mazandarani M., Najariyan M. Differentiability of type-2 fuzzy number-valued Functions. Commun Nonlinear Sci Numer Simul 2014, 19(3):710-725.
-
(2014)
Commun Nonlinear Sci Numer Simul
, vol.19
, Issue.3
, pp. 710-725
-
-
Mazandarani, M.1
Najariyan, M.2
-
18
-
-
85196170154
-
-
On new quasi-type-2 fuzzy logic systems. In: Proceeding of 2008 international conference on fuzzy systems, WCCI;
-
Mendel JM. On new quasi-type-2 fuzzy logic systems. In: Proceeding of 2008 international conference on fuzzy systems, WCCI; 2008.
-
(2008)
-
-
Mendel, JM.1
-
19
-
-
70350064580
-
α-Plane representation for type-2 fuzzy sets: theory and applications
-
Mendel J.M., Liu F., Zhai D. α-Plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans Fuzzy Syst 2009, 17(5):1189-1207.
-
(2009)
IEEE Trans Fuzzy Syst
, vol.17
, Issue.5
, pp. 1189-1207
-
-
Mendel, J.M.1
Liu, F.2
Zhai, D.3
-
20
-
-
85196146489
-
-
Type-2 fuzzy alpha-cuts, De Montfort University, Ph.D. thesis;
-
Hamrawi H. Type-2 fuzzy alpha-cuts, De Montfort University, Ph.D. thesis; 2011.
-
(2011)
-
-
Hamrawi, H.1
-
21
-
-
85045876247
-
A novel alpha-cut representation for type-2 fuzzy sets
-
In: IEEE international conference on fuzzy systems;
-
Hamrawi H, Coupland S. A novel alpha-cut representation for type-2 fuzzy sets. In: IEEE international conference on fuzzy systems; 2010.
-
(2010)
-
-
Hamrawi, H.1
Coupland, S.2
-
22
-
-
78449299986
-
-
Type-2 fuzzy arithmetic using alpha-planes. In: Proc. IFSA-EUSFLAT, Portugal;
-
Hamrawi H, Coupland S. Type-2 fuzzy arithmetic using alpha-planes. In: Proc. IFSA-EUSFLAT, Portugal; 2009. p. 606-611.
-
(2009)
, pp. 606-611
-
-
Hamrawi, H.1
Coupland, S.2
-
24
-
-
14544296605
-
Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations
-
Bede B., Gal S.G. Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Set Syst 2005, 151:581-599.
-
(2005)
Fuzzy Set Syst
, vol.151
, pp. 581-599
-
-
Bede, B.1
Gal, S.G.2
-
26
-
-
0032202946
-
The improper fuzzy Riemann integral and its numerical integration
-
Wu H.C. The improper fuzzy Riemann integral and its numerical integration. Inform Sci 1999, 111:109-137.
-
(1999)
Inform Sci
, vol.111
, pp. 109-137
-
-
Wu, H.C.1
-
27
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
Diethelm K., Ford N.J., Freed A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 2002, 29:3-22.
-
(2002)
Nonlinear Dyn
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
28
-
-
0010186169
-
The FracPECE subroutine for the numerical solution of differential equations of fractional order
-
Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen, S. Heinzel, T. Plesser (Eds.)
-
Diethelm K., Freed A.D. The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen 1998 1999, 57-71. Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen. S. Heinzel, T. Plesser (Eds.).
-
(1999)
Forschung und wissenschaftliches Rechnen 1998
, pp. 57-71
-
-
Diethelm, K.1
Freed, A.D.2
-
29
-
-
4043121080
-
Detailed error analysis for a fractional Adams method
-
Diethelm K., Ford N.J., Freed A.D. Detailed error analysis for a fractional Adams method. Numer Algorithms 2004, 36(1):31-52.
-
(2004)
Numer Algorithms
, vol.36
, Issue.1
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
30
-
-
84886820121
-
A fractional pressure-volume model of cerebrospinal fluid dynamics in hydrocephalus
-
Kauffman Justin, Drapaca Corina S. A fractional pressure-volume model of cerebrospinal fluid dynamics in hydrocephalus. Mech Biol Syst Mater 2014, 4:179-184.
-
(2014)
Mech Biol Syst Mater
, vol.4
, pp. 179-184
-
-
Kauffman, J.1
Drapaca, C.S.2
-
31
-
-
84884822550
-
Application of fuzzy fractional kinetic equations to modellingof the acid hydrolysis reaction
-
Ghaemi F., Yunus R., Ahmadian A., Salahshour S., Suleiman M., Faridah Saleh S. Application of fuzzy fractional kinetic equations to modellingof the acid hydrolysis reaction. Abstract Appl Anal. 2013, 2013:19. 10.1155/2013/610314.
-
(2013)
Abstract Appl Anal.
, vol.2013
, pp. 19
-
-
Ghaemi, F.1
Yunus, R.2
Ahmadian, A.3
Salahshour, S.4
Suleiman, M.5
Faridah Saleh, S.6
|