메뉴 건너뛰기




Volumn 243, Issue , 2014, Pages 79-91

Deactivation and kinetic studies of unsupported Ni and Ni-Co-Cu alloy catalysts used for hydrogen production by methane decomposition

Author keywords

Alloy catalyst; Deactivation; Kinetic model; Methane decomposition; Nickel nano particle

Indexed keywords

ALLOY CATALYST; CATALYTIC DEACTIVATION; DEACTIVATION; DECOMPOSITION OF METHANE; EXPONENTIAL DECAY MODELS; KINETIC MODELING; METHANE DECOMPOSITION; PHENOMENOLOGICAL MODELING;

EID: 84892967747     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2013.12.100     Document Type: Article
Times cited : (46)

References (63)
  • 1
    • 0033872950 scopus 로고    scopus 로고
    • Purifier-integrated methanol reformer for fuel cell vehicles
    • Han J., Kim I.S., Choi K.S. Purifier-integrated methanol reformer for fuel cell vehicles. J. Power Sources 2000, 86:223-227.
    • (2000) J. Power Sources , vol.86 , pp. 223-227
    • Han, J.1    Kim, I.S.2    Choi, K.S.3
  • 2
    • 80755136710 scopus 로고    scopus 로고
    • Preparation of core (Ni base)-shell (Silicalite-1) catalysts and their application for alkali resistance in direct internal reforming molten carbonate fuel cell
    • Zhang J., Zhang X.F., Tu M., Liu W.F., Liu H.O., Qiu J.S., Zhou L., Shao Z.G., Ho H.L., Yeung K.L. Preparation of core (Ni base)-shell (Silicalite-1) catalysts and their application for alkali resistance in direct internal reforming molten carbonate fuel cell. J. Power Sources 2012, 198:14-22.
    • (2012) J. Power Sources , vol.198 , pp. 14-22
    • Zhang, J.1    Zhang, X.F.2    Tu, M.3    Liu, W.F.4    Liu, H.O.5    Qiu, J.S.6    Zhou, L.7    Shao, Z.G.8    Ho, H.L.9    Yeung, K.L.10
  • 3
    • 68549099533 scopus 로고    scopus 로고
    • Preparation of alkali-resistant, Sil-1 encapsulated nickel catalysts for direct internal reforming-molten carbonate fuel cell
    • Zhou J.L., Zhang X.F., Zhang J., Liu H.O., Zhou L., Yeung K.L. Preparation of alkali-resistant, Sil-1 encapsulated nickel catalysts for direct internal reforming-molten carbonate fuel cell. Catal. Commun. 2009, 10:1804-1807.
    • (2009) Catal. Commun. , vol.10 , pp. 1804-1807
    • Zhou, J.L.1    Zhang, X.F.2    Zhang, J.3    Liu, H.O.4    Zhou, L.5    Yeung, K.L.6
  • 4
    • 0345168218 scopus 로고    scopus 로고
    • Modern global climate change
    • Karl T.R., Trenberth K.E. Modern global climate change. Science 2003, 302:1719-1723.
    • (2003) Science , vol.302 , pp. 1719-1723
    • Karl, T.R.1    Trenberth, K.E.2
  • 5
    • 0023138989 scopus 로고
    • Hydrogen technology for energy needs of human settlements
    • Veziroglu T.N. Hydrogen technology for energy needs of human settlements. Int. J. Hydrogen Energy 1987, 12:99-129.
    • (1987) Int. J. Hydrogen Energy , vol.12 , pp. 99-129
    • Veziroglu, T.N.1
  • 6
    • 0034647920 scopus 로고    scopus 로고
    • Causes of climate change over the past 1000 years
    • Crowley T.J. Causes of climate change over the past 1000 years. Science 2000, 289:270-277.
    • (2000) Science , vol.289 , pp. 270-277
    • Crowley, T.J.1
  • 8
    • 67349219414 scopus 로고    scopus 로고
    • Hydrogen production from partial oxidation of methane in a membrane reactor
    • Cheng Y.S., Pena M.A., Yeung K.L. Hydrogen production from partial oxidation of methane in a membrane reactor. J. Taiwan Inst. Chem. Eng. 2009, 40:281-288.
    • (2009) J. Taiwan Inst. Chem. Eng. , vol.40 , pp. 281-288
    • Cheng, Y.S.1    Pena, M.A.2    Yeung, K.L.3
  • 9
    • 57049117880 scopus 로고    scopus 로고
    • Possible methods for hydrogen production, energy sources part a-recovery util
    • Balat M. Possible methods for hydrogen production, energy sources part a-recovery util. Environ. Eff. 2009, 31:39-50.
    • (2009) Environ. Eff. , vol.31 , pp. 39-50
    • Balat, M.1
  • 10
    • 59649101341 scopus 로고    scopus 로고
    • Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalyst supported on mesoporous alumina prepared by a non-ionic surfactant-templating method
    • Seo J.G., Youn M.H., Song I.K. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalyst supported on mesoporous alumina prepared by a non-ionic surfactant-templating method. Int. J. Hydrogen Energy 2009, 34:1809-1817.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 1809-1817
    • Seo, J.G.1    Youn, M.H.2    Song, I.K.3
  • 12
    • 79952443548 scopus 로고    scopus 로고
    • x-free hydrogen and nano-carbon material on group 8-10 base metal catalysts: A review
    • x-free hydrogen and nano-carbon material on group 8-10 base metal catalysts: A review. Catal. Today 2011, 162:1-48.
    • (2011) Catal. Today , vol.162 , pp. 1-48
    • Li, Y.D.1    Li, D.X.2    Wang, G.W.3
  • 13
    • 84893010178 scopus 로고
    • Manufacture of carbon filaments, U.S. Patent, 405, 480
    • T.V. Hughes, C.R. Chambers, Manufacture of carbon filaments, U.S. Patent, 405, 480, 1889.
    • (1889)
    • Hughes, T.V.1    Chambers, C.R.2
  • 14
    • 34548476761 scopus 로고    scopus 로고
    • Vertically aligned carbon nanotube membranes on macroporous alumina supports
    • Mi W., Lin Y.S., Li Y. Vertically aligned carbon nanotube membranes on macroporous alumina supports. J. Membr. Sci. 2007, 304:1-7.
    • (2007) J. Membr. Sci. , vol.304 , pp. 1-7
    • Mi, W.1    Lin, Y.S.2    Li, Y.3
  • 15
    • 0034311739 scopus 로고    scopus 로고
    • Carbon nanofibers: catalytic synthesis and applications
    • De Jong K.P., Geus J.W. Carbon nanofibers: catalytic synthesis and applications. Catal. Rev. 2000, 42:481-510.
    • (2000) Catal. Rev. , vol.42 , pp. 481-510
    • De Jong, K.P.1    Geus, J.W.2
  • 16
    • 79960380100 scopus 로고    scopus 로고
    • Recent progress on the growth mechanism of carbon nanotubes: a review
    • Tessonnier J.P., Su D.S. Recent progress on the growth mechanism of carbon nanotubes: a review. Chemsuschem 2011, 4:824-847.
    • (2011) Chemsuschem , vol.4 , pp. 824-847
    • Tessonnier, J.P.1    Su, D.S.2
  • 17
    • 0242583724 scopus 로고    scopus 로고
    • The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes - a review
    • Moisala A., Nasibulin A.G., Kauppinen E.I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes - a review. J. Phys. - Condens. Matter 2003, 15:S3011-S3035.
    • (2003) J. Phys. - Condens. Matter , vol.15
    • Moisala, A.1    Nasibulin, A.G.2    Kauppinen, E.I.3
  • 18
    • 0029389912 scopus 로고
    • Catalytic engineering of carbon nanostructures
    • Rodriguez N.M., Chambers A., Baker R.T.K. Catalytic engineering of carbon nanostructures. Langmuir 1995, 11:3862-3866.
    • (1995) Langmuir , vol.11 , pp. 3862-3866
    • Rodriguez, N.M.1    Chambers, A.2    Baker, R.T.K.3
  • 19
    • 77952894545 scopus 로고    scopus 로고
    • An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds
    • MacKenzie K.J., Dunens O.M., Harris A.T. An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Ind. Eng. Chem. Res. 2010, 49:5323-5338.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 5323-5338
    • MacKenzie, K.J.1    Dunens, O.M.2    Harris, A.T.3
  • 21
    • 74849096484 scopus 로고    scopus 로고
    • Hydrogen production by methane decomposition: a review
    • Abbas H.F., Daud W. Hydrogen production by methane decomposition: a review. Int. J. Hydrogen Energy 2010, 35:1160-1190.
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 1160-1190
    • Abbas, H.F.1    Daud, W.2
  • 22
    • 0034317871 scopus 로고    scopus 로고
    • Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst
    • Li Y.D., Chen J.L., Qin Y.N., Chang L. Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst. Energy Fuel 2000, 14:1188-1194.
    • (2000) Energy Fuel , vol.14 , pp. 1188-1194
    • Li, Y.D.1    Chen, J.L.2    Qin, Y.N.3    Chang, L.4
  • 23
    • 75149175217 scopus 로고    scopus 로고
    • Production of hydrogen from thermo-catalytic decomposition of methane in a fluidized bed reactor
    • Ammendola P., Chirone R., Ruoppolo G., Russo G. Production of hydrogen from thermo-catalytic decomposition of methane in a fluidized bed reactor. Chem. Eng. J. 2009, 154:287-294.
    • (2009) Chem. Eng. J. , vol.154 , pp. 287-294
    • Ammendola, P.1    Chirone, R.2    Ruoppolo, G.3    Russo, G.4
  • 24
    • 63149188083 scopus 로고    scopus 로고
    • Production of carbon nanotubes from methane Use of Co-Zn-Al catalysts prepared by microwave-assisted synthesis
    • Benito R., Herrero M., Labajos F.M., Rives V., Royo C., Latorre N., Monzon A. Production of carbon nanotubes from methane Use of Co-Zn-Al catalysts prepared by microwave-assisted synthesis. Chem. Eng. J. 2009, 149:455-462.
    • (2009) Chem. Eng. J. , vol.149 , pp. 455-462
    • Benito, R.1    Herrero, M.2    Labajos, F.M.3    Rives, V.4    Royo, C.5    Latorre, N.6    Monzon, A.7
  • 25
    • 72049121447 scopus 로고    scopus 로고
    • Characterization of nanofibrous carbon produced at pilot-scale in a fluidized bed reactor by methane decomposition
    • Pinilla J.L., Lazaro M.J., Suelves I., Moliner R., Palacios J.M. Characterization of nanofibrous carbon produced at pilot-scale in a fluidized bed reactor by methane decomposition. Chem. Eng. J. 2010, 156:170-176.
    • (2010) Chem. Eng. J. , vol.156 , pp. 170-176
    • Pinilla, J.L.1    Lazaro, M.J.2    Suelves, I.3    Moliner, R.4    Palacios, J.M.5
  • 26
    • 78650517367 scopus 로고    scopus 로고
    • Hydrogen production by methane decomposition and catalytic partial oxidation of methane over Pt/CexGd1 (-) O-x(2) and Pt/CexZr1 (-) O-x(2)
    • Salazar-Villalpando M.D., Miller A.C. Hydrogen production by methane decomposition and catalytic partial oxidation of methane over Pt/CexGd1 (-) O-x(2) and Pt/CexZr1 (-) O-x(2). Chem. Eng. J. 2011, 166:738-743.
    • (2011) Chem. Eng. J. , vol.166 , pp. 738-743
    • Salazar-Villalpando, M.D.1    Miller, A.C.2
  • 27
    • 44249098276 scopus 로고    scopus 로고
    • Carbonaceous materials as catalysts for decomposition of methane
    • Suelves I., Pinilla J.L., Lázaro M.J., Moliner R. Carbonaceous materials as catalysts for decomposition of methane. Chem. Eng. J. 2008, 140:432-438.
    • (2008) Chem. Eng. J. , vol.140 , pp. 432-438
    • Suelves, I.1    Pinilla, J.L.2    Lázaro, M.J.3    Moliner, R.4
  • 28
    • 40749116033 scopus 로고    scopus 로고
    • Kinetic study of the thermal decomposition of methane using carbonaceous catalysts
    • Pinilla J.L., Suelves I., Lázaro M.J., Moliner R. Kinetic study of the thermal decomposition of methane using carbonaceous catalysts. Chem. Eng. J. 2008, 138:301-306.
    • (2008) Chem. Eng. J. , vol.138 , pp. 301-306
    • Pinilla, J.L.1    Suelves, I.2    Lázaro, M.J.3    Moliner, R.4
  • 30
    • 56749178671 scopus 로고    scopus 로고
    • Kinetic modelling of methane decomposition in a tubular solar reactor
    • Rodat S., Abanades S., Coulie J., Flamant G. Kinetic modelling of methane decomposition in a tubular solar reactor. Chem. Eng. J. 2009, 146:120-127.
    • (2009) Chem. Eng. J. , vol.146 , pp. 120-127
    • Rodat, S.1    Abanades, S.2    Coulie, J.3    Flamant, G.4
  • 32
    • 3843123062 scopus 로고    scopus 로고
    • 2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation
    • 2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Appl. Catal. A - Gen. 2004, 272:219-227.
    • (2004) Appl. Catal. A - Gen. , vol.272 , pp. 219-227
    • Zavarukhin, S.G.1    Kuvshinov, G.G.2
  • 33
    • 67651070600 scopus 로고    scopus 로고
    • Deactivation of palm shell-based activated carbon catalyst used for hydrogen production by thermocatalytic decomposition of methane
    • Abbas H.F., Wan Daud W.M.A. Deactivation of palm shell-based activated carbon catalyst used for hydrogen production by thermocatalytic decomposition of methane. Int. J. Hydrogen Energy 2009, 34:6231-6241.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 6231-6241
    • Abbas, H.F.1    Wan Daud, W.M.A.2
  • 36
    • 1542358067 scopus 로고    scopus 로고
    • Formation of filamentous carbons over supported Fe catalysts through methane decomposition
    • Takenaka S., Serizawa M., Otsuka K. Formation of filamentous carbons over supported Fe catalysts through methane decomposition. J. Catal. 2004, 222:520-531.
    • (2004) J. Catal. , vol.222 , pp. 520-531
    • Takenaka, S.1    Serizawa, M.2    Otsuka, K.3
  • 38
    • 58549106332 scopus 로고    scopus 로고
    • Fabrication of single-wall carbon nanotubes within the channels of a mesoporous material by catalyst-supported chemical vapor deposition
    • Kobayashi K., Kitaura R., Kumai Y., Goto Y., Imagaki S., Shinohara H. Fabrication of single-wall carbon nanotubes within the channels of a mesoporous material by catalyst-supported chemical vapor deposition. Carbon 2009, 47:722-730.
    • (2009) Carbon , vol.47 , pp. 722-730
    • Kobayashi, K.1    Kitaura, R.2    Kumai, Y.3    Goto, Y.4    Imagaki, S.5    Shinohara, H.6
  • 41
    • 0347573855 scopus 로고    scopus 로고
    • Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts
    • Zhang T., Amiridis M.D. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl. Catal. A: Gen. 1998, 167:161-172.
    • (1998) Appl. Catal. A: Gen. , vol.167 , pp. 161-172
    • Zhang, T.1    Amiridis, M.D.2
  • 42
    • 30244441163 scopus 로고    scopus 로고
    • Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction
    • Avdeeva L.B., Goncharova O.V., Kochubey D.I., Zaikovskii V.I., Plyasova L.M., Novgorodov B.N., Shaikhutdinov S.K. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction. Appl. Catal. A 1996, 141:117-129.
    • (1996) Appl. Catal. A , vol.141 , pp. 117-129
    • Avdeeva, L.B.1    Goncharova, O.V.2    Kochubey, D.I.3    Zaikovskii, V.I.4    Plyasova, L.M.5    Novgorodov, B.N.6    Shaikhutdinov, S.K.7
  • 43
    • 0033591703 scopus 로고    scopus 로고
    • Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures
    • Li Y.D., Chen J.L., Ma Y.M., Zhao J.B., Qin Y.N., Chang L. Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures. Chem. Commun. 1999, 1141-1142.
    • (1999) Chem. Commun. , pp. 1141-1142
    • Li, Y.D.1    Chen, J.L.2    Ma, Y.M.3    Zhao, J.B.4    Qin, Y.N.5    Chang, L.6
  • 44
    • 74249105913 scopus 로고    scopus 로고
    • Pore geometry influence on the deactivation behavior of Ni-based catalysts for simultaneous production of hydrogen and nanocarbon
    • Salmones J., Wang J.A., Valenzuela M.A., Sanchez E., Garcia A. Pore geometry influence on the deactivation behavior of Ni-based catalysts for simultaneous production of hydrogen and nanocarbon. Catal. Today 2009, 148:134-139.
    • (2009) Catal. Today , vol.148 , pp. 134-139
    • Salmones, J.1    Wang, J.A.2    Valenzuela, M.A.3    Sanchez, E.4    Garcia, A.5
  • 45
    • 67650135738 scopus 로고    scopus 로고
    • Doped Ni thin layer catalysts for catalytic decomposition of natural gas to produce hydrogen
    • Italiano G., Espro C., Arena F., Parmaliana A., Frusteri F. Doped Ni thin layer catalysts for catalytic decomposition of natural gas to produce hydrogen. Appl. Catal. A - Gen. 2009, 365:122-129.
    • (2009) Appl. Catal. A - Gen. , vol.365 , pp. 122-129
    • Italiano, G.1    Espro, C.2    Arena, F.3    Parmaliana, A.4    Frusteri, F.5
  • 49
    • 84872424494 scopus 로고    scopus 로고
    • Decomposition of methane over unsupported porous nickel and alloy catalyst
    • Lua A.C., Wang H.Y. Decomposition of methane over unsupported porous nickel and alloy catalyst. Appl. Catal. B: Environ. 2013, 132-133:469-478.
    • (2013) Appl. Catal. B: Environ. , pp. 469-478
    • Lua, A.C.1    Wang, H.Y.2
  • 50
    • 84871663151 scopus 로고    scopus 로고
    • Development of metallic nickel nanoparticle catalyst for the decomposition of methane into hydrogen and carbon nanofibers
    • Wang H.Y., Lua A.C. Development of metallic nickel nanoparticle catalyst for the decomposition of methane into hydrogen and carbon nanofibers. J. Phys. Chem. C 2012, 116:26765-26775.
    • (2012) J. Phys. Chem. C , vol.116 , pp. 26765-26775
    • Wang, H.Y.1    Lua, A.C.2
  • 51
    • 12344267759 scopus 로고    scopus 로고
    • Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres
    • Wang X., Song J.M., Gao L.S., Jin J.Y., Zheng H.G., Zhang Z.D. Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. Nanotechnology 2005, 16:37-39.
    • (2005) Nanotechnology , vol.16 , pp. 37-39
    • Wang, X.1    Song, J.M.2    Gao, L.S.3    Jin, J.Y.4    Zheng, H.G.5    Zhang, Z.D.6
  • 53
    • 79951578998 scopus 로고    scopus 로고
    • Review of methane catalytic cracking for hydrogen production
    • Amin A.M., Croiset E., Epling W. Review of methane catalytic cracking for hydrogen production. Int. J. Hydrogen Energy 2011, 36:2904-2935.
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 2904-2935
    • Amin, A.M.1    Croiset, E.2    Epling, W.3
  • 55
    • 43649097414 scopus 로고    scopus 로고
    • Optimization and scale-up of CNF production based on intrinsic kinetic data obtained from TEOM
    • Kvande I., Chen D., Yu Z., Ronning M., Holmen A. Optimization and scale-up of CNF production based on intrinsic kinetic data obtained from TEOM. J. Catal. 2008, 256:204-214.
    • (2008) J. Catal. , vol.256 , pp. 204-214
    • Kvande, I.1    Chen, D.2    Yu, Z.3    Ronning, M.4    Holmen, A.5
  • 57
    • 77958154518 scopus 로고    scopus 로고
    • Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: apparent kinetic, deactivation and diffusional limitation studies
    • Abbas H.F., Daud W. Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: apparent kinetic, deactivation and diffusional limitation studies. Int. J. Hydrogen Energy 2010, 35:12268-12276.
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 12268-12276
    • Abbas, H.F.1    Daud, W.2
  • 58
    • 0019913133 scopus 로고
    • Kinetic equations of mechanistic type with nonseparable variables for catalyst deactivation by coke. Models and data analysis methods
    • Asua
    • Corella J.M., Asua Kinetic equations of mechanistic type with nonseparable variables for catalyst deactivation by coke. Models and data analysis methods. Ind. Eng. Chem. Process Des. Dev. 1982, 21:55-61.
    • (1982) Ind. Eng. Chem. Process Des. Dev. , vol.21 , pp. 55-61
    • Corella, J.M.1
  • 59
    • 0029326309 scopus 로고
    • Kinetic modelling of the deactivation of a commercial silica-alumina catalyst during isopropylbenzene cracking
    • Rodríguez J.C., Peña J.A., Monzón A., Hughes R., Li K. Kinetic modelling of the deactivation of a commercial silica-alumina catalyst during isopropylbenzene cracking. Chem. Eng. J. Biochem. Eng. J. 1995, 58:7-13.
    • (1995) Chem. Eng. J. Biochem. Eng. J. , vol.58 , pp. 7-13
    • Rodríguez, J.C.1    Peña, J.A.2    Monzón, A.3    Hughes, R.4    Li, K.5
  • 60
    • 77949869022 scopus 로고    scopus 로고
    • Carbon nanotube growth by catalytic chemical vapor deposition: a phenomenological kinetic model
    • Latorre N., Romeo E., Cazana F., Ubieto T., Royo C., Villacampa J.J., Monzon A. Carbon nanotube growth by catalytic chemical vapor deposition: a phenomenological kinetic model. J. Phys. Chem. C 2010, 114:4773-4782.
    • (2010) J. Phys. Chem. C , vol.114 , pp. 4773-4782
    • Latorre, N.1    Romeo, E.2    Cazana, F.3    Ubieto, T.4    Royo, C.5    Villacampa, J.J.6    Monzon, A.7
  • 61
    • 77955833068 scopus 로고    scopus 로고
    • Kinetics of carbon nanotubes growth on a Ni-Mg-Al catalyst by CCVD of methane: influence of catalyst deactivation
    • Latorre N., Romeo E., Villacampa J.I., Cazana F., Royo C., Cazaña F., Monzón A. Kinetics of carbon nanotubes growth on a Ni-Mg-Al catalyst by CCVD of methane: influence of catalyst deactivation. Catal. Today 2010, 154:217-223.
    • (2010) Catal. Today , vol.154 , pp. 217-223
    • Latorre, N.1    Romeo, E.2    Villacampa, J.I.3    Cazana, F.4    Royo, C.5    Cazaña, F.6    Monzón, A.7
  • 62
    • 12344293793 scopus 로고    scopus 로고
    • Decomposition of methane over a Ni-Cu-MgO catalyst to produce hydrogen and carbon nanofibers
    • Wang H.Y., Baker R.T.K. Decomposition of methane over a Ni-Cu-MgO catalyst to produce hydrogen and carbon nanofibers. J. Phys. Chem. B 2004, 108:20273-20277.
    • (2004) J. Phys. Chem. B , vol.108 , pp. 20273-20277
    • Wang, H.Y.1    Baker, R.T.K.2
  • 63
    • 0001827436 scopus 로고
    • Deactivation of copper nickel catalysts due to changes in surface composition
    • Rodriguez N.M., Kim M.S., Baker R.T.K. Deactivation of copper nickel catalysts due to changes in surface composition. J. Catal. 1993, 140:16-29.
    • (1993) J. Catal. , vol.140 , pp. 16-29
    • Rodriguez, N.M.1    Kim, M.S.2    Baker, R.T.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.