-
1
-
-
0033872950
-
Purifier-integrated methanol reformer for fuel cell vehicles
-
Han J., Kim I.S., Choi K.S. Purifier-integrated methanol reformer for fuel cell vehicles. J. Power Sources 2000, 86:223-227.
-
(2000)
J. Power Sources
, vol.86
, pp. 223-227
-
-
Han, J.1
Kim, I.S.2
Choi, K.S.3
-
2
-
-
80755136710
-
Preparation of core (Ni base)-shell (Silicalite-1) catalysts and their application for alkali resistance in direct internal reforming molten carbonate fuel cell
-
Zhang J., Zhang X.F., Tu M., Liu W.F., Liu H.O., Qiu J.S., Zhou L., Shao Z.G., Ho H.L., Yeung K.L. Preparation of core (Ni base)-shell (Silicalite-1) catalysts and their application for alkali resistance in direct internal reforming molten carbonate fuel cell. J. Power Sources 2012, 198:14-22.
-
(2012)
J. Power Sources
, vol.198
, pp. 14-22
-
-
Zhang, J.1
Zhang, X.F.2
Tu, M.3
Liu, W.F.4
Liu, H.O.5
Qiu, J.S.6
Zhou, L.7
Shao, Z.G.8
Ho, H.L.9
Yeung, K.L.10
-
3
-
-
68549099533
-
Preparation of alkali-resistant, Sil-1 encapsulated nickel catalysts for direct internal reforming-molten carbonate fuel cell
-
Zhou J.L., Zhang X.F., Zhang J., Liu H.O., Zhou L., Yeung K.L. Preparation of alkali-resistant, Sil-1 encapsulated nickel catalysts for direct internal reforming-molten carbonate fuel cell. Catal. Commun. 2009, 10:1804-1807.
-
(2009)
Catal. Commun.
, vol.10
, pp. 1804-1807
-
-
Zhou, J.L.1
Zhang, X.F.2
Zhang, J.3
Liu, H.O.4
Zhou, L.5
Yeung, K.L.6
-
4
-
-
0345168218
-
Modern global climate change
-
Karl T.R., Trenberth K.E. Modern global climate change. Science 2003, 302:1719-1723.
-
(2003)
Science
, vol.302
, pp. 1719-1723
-
-
Karl, T.R.1
Trenberth, K.E.2
-
5
-
-
0023138989
-
Hydrogen technology for energy needs of human settlements
-
Veziroglu T.N. Hydrogen technology for energy needs of human settlements. Int. J. Hydrogen Energy 1987, 12:99-129.
-
(1987)
Int. J. Hydrogen Energy
, vol.12
, pp. 99-129
-
-
Veziroglu, T.N.1
-
6
-
-
0034647920
-
Causes of climate change over the past 1000 years
-
Crowley T.J. Causes of climate change over the past 1000 years. Science 2000, 289:270-277.
-
(2000)
Science
, vol.289
, pp. 270-277
-
-
Crowley, T.J.1
-
8
-
-
67349219414
-
Hydrogen production from partial oxidation of methane in a membrane reactor
-
Cheng Y.S., Pena M.A., Yeung K.L. Hydrogen production from partial oxidation of methane in a membrane reactor. J. Taiwan Inst. Chem. Eng. 2009, 40:281-288.
-
(2009)
J. Taiwan Inst. Chem. Eng.
, vol.40
, pp. 281-288
-
-
Cheng, Y.S.1
Pena, M.A.2
Yeung, K.L.3
-
9
-
-
57049117880
-
Possible methods for hydrogen production, energy sources part a-recovery util
-
Balat M. Possible methods for hydrogen production, energy sources part a-recovery util. Environ. Eff. 2009, 31:39-50.
-
(2009)
Environ. Eff.
, vol.31
, pp. 39-50
-
-
Balat, M.1
-
10
-
-
59649101341
-
Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalyst supported on mesoporous alumina prepared by a non-ionic surfactant-templating method
-
Seo J.G., Youn M.H., Song I.K. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalyst supported on mesoporous alumina prepared by a non-ionic surfactant-templating method. Int. J. Hydrogen Energy 2009, 34:1809-1817.
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 1809-1817
-
-
Seo, J.G.1
Youn, M.H.2
Song, I.K.3
-
12
-
-
79952443548
-
x-free hydrogen and nano-carbon material on group 8-10 base metal catalysts: A review
-
x-free hydrogen and nano-carbon material on group 8-10 base metal catalysts: A review. Catal. Today 2011, 162:1-48.
-
(2011)
Catal. Today
, vol.162
, pp. 1-48
-
-
Li, Y.D.1
Li, D.X.2
Wang, G.W.3
-
13
-
-
84893010178
-
-
Manufacture of carbon filaments, U.S. Patent, 405, 480
-
T.V. Hughes, C.R. Chambers, Manufacture of carbon filaments, U.S. Patent, 405, 480, 1889.
-
(1889)
-
-
Hughes, T.V.1
Chambers, C.R.2
-
14
-
-
34548476761
-
Vertically aligned carbon nanotube membranes on macroporous alumina supports
-
Mi W., Lin Y.S., Li Y. Vertically aligned carbon nanotube membranes on macroporous alumina supports. J. Membr. Sci. 2007, 304:1-7.
-
(2007)
J. Membr. Sci.
, vol.304
, pp. 1-7
-
-
Mi, W.1
Lin, Y.S.2
Li, Y.3
-
15
-
-
0034311739
-
Carbon nanofibers: catalytic synthesis and applications
-
De Jong K.P., Geus J.W. Carbon nanofibers: catalytic synthesis and applications. Catal. Rev. 2000, 42:481-510.
-
(2000)
Catal. Rev.
, vol.42
, pp. 481-510
-
-
De Jong, K.P.1
Geus, J.W.2
-
16
-
-
79960380100
-
Recent progress on the growth mechanism of carbon nanotubes: a review
-
Tessonnier J.P., Su D.S. Recent progress on the growth mechanism of carbon nanotubes: a review. Chemsuschem 2011, 4:824-847.
-
(2011)
Chemsuschem
, vol.4
, pp. 824-847
-
-
Tessonnier, J.P.1
Su, D.S.2
-
17
-
-
0242583724
-
The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes - a review
-
Moisala A., Nasibulin A.G., Kauppinen E.I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes - a review. J. Phys. - Condens. Matter 2003, 15:S3011-S3035.
-
(2003)
J. Phys. - Condens. Matter
, vol.15
-
-
Moisala, A.1
Nasibulin, A.G.2
Kauppinen, E.I.3
-
18
-
-
0029389912
-
Catalytic engineering of carbon nanostructures
-
Rodriguez N.M., Chambers A., Baker R.T.K. Catalytic engineering of carbon nanostructures. Langmuir 1995, 11:3862-3866.
-
(1995)
Langmuir
, vol.11
, pp. 3862-3866
-
-
Rodriguez, N.M.1
Chambers, A.2
Baker, R.T.K.3
-
19
-
-
77952894545
-
An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds
-
MacKenzie K.J., Dunens O.M., Harris A.T. An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Ind. Eng. Chem. Res. 2010, 49:5323-5338.
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 5323-5338
-
-
MacKenzie, K.J.1
Dunens, O.M.2
Harris, A.T.3
-
20
-
-
64549144211
-
Decomposition of hydrocarbons to hydrogen and carbon
-
Ahmed S., Aitani A., Rahman F., Al-Dawood A., Al-Muhaish F. Decomposition of hydrocarbons to hydrogen and carbon. Appl. Catal. A - Gen. 2009, 359:1-24.
-
(2009)
Appl. Catal. A - Gen.
, vol.359
, pp. 1-24
-
-
Ahmed, S.1
Aitani, A.2
Rahman, F.3
Al-Dawood, A.4
Al-Muhaish, F.5
-
21
-
-
74849096484
-
Hydrogen production by methane decomposition: a review
-
Abbas H.F., Daud W. Hydrogen production by methane decomposition: a review. Int. J. Hydrogen Energy 2010, 35:1160-1190.
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 1160-1190
-
-
Abbas, H.F.1
Daud, W.2
-
22
-
-
0034317871
-
Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst
-
Li Y.D., Chen J.L., Qin Y.N., Chang L. Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst. Energy Fuel 2000, 14:1188-1194.
-
(2000)
Energy Fuel
, vol.14
, pp. 1188-1194
-
-
Li, Y.D.1
Chen, J.L.2
Qin, Y.N.3
Chang, L.4
-
23
-
-
75149175217
-
Production of hydrogen from thermo-catalytic decomposition of methane in a fluidized bed reactor
-
Ammendola P., Chirone R., Ruoppolo G., Russo G. Production of hydrogen from thermo-catalytic decomposition of methane in a fluidized bed reactor. Chem. Eng. J. 2009, 154:287-294.
-
(2009)
Chem. Eng. J.
, vol.154
, pp. 287-294
-
-
Ammendola, P.1
Chirone, R.2
Ruoppolo, G.3
Russo, G.4
-
24
-
-
63149188083
-
Production of carbon nanotubes from methane Use of Co-Zn-Al catalysts prepared by microwave-assisted synthesis
-
Benito R., Herrero M., Labajos F.M., Rives V., Royo C., Latorre N., Monzon A. Production of carbon nanotubes from methane Use of Co-Zn-Al catalysts prepared by microwave-assisted synthesis. Chem. Eng. J. 2009, 149:455-462.
-
(2009)
Chem. Eng. J.
, vol.149
, pp. 455-462
-
-
Benito, R.1
Herrero, M.2
Labajos, F.M.3
Rives, V.4
Royo, C.5
Latorre, N.6
Monzon, A.7
-
25
-
-
72049121447
-
Characterization of nanofibrous carbon produced at pilot-scale in a fluidized bed reactor by methane decomposition
-
Pinilla J.L., Lazaro M.J., Suelves I., Moliner R., Palacios J.M. Characterization of nanofibrous carbon produced at pilot-scale in a fluidized bed reactor by methane decomposition. Chem. Eng. J. 2010, 156:170-176.
-
(2010)
Chem. Eng. J.
, vol.156
, pp. 170-176
-
-
Pinilla, J.L.1
Lazaro, M.J.2
Suelves, I.3
Moliner, R.4
Palacios, J.M.5
-
26
-
-
78650517367
-
Hydrogen production by methane decomposition and catalytic partial oxidation of methane over Pt/CexGd1 (-) O-x(2) and Pt/CexZr1 (-) O-x(2)
-
Salazar-Villalpando M.D., Miller A.C. Hydrogen production by methane decomposition and catalytic partial oxidation of methane over Pt/CexGd1 (-) O-x(2) and Pt/CexZr1 (-) O-x(2). Chem. Eng. J. 2011, 166:738-743.
-
(2011)
Chem. Eng. J.
, vol.166
, pp. 738-743
-
-
Salazar-Villalpando, M.D.1
Miller, A.C.2
-
27
-
-
44249098276
-
Carbonaceous materials as catalysts for decomposition of methane
-
Suelves I., Pinilla J.L., Lázaro M.J., Moliner R. Carbonaceous materials as catalysts for decomposition of methane. Chem. Eng. J. 2008, 140:432-438.
-
(2008)
Chem. Eng. J.
, vol.140
, pp. 432-438
-
-
Suelves, I.1
Pinilla, J.L.2
Lázaro, M.J.3
Moliner, R.4
-
28
-
-
40749116033
-
Kinetic study of the thermal decomposition of methane using carbonaceous catalysts
-
Pinilla J.L., Suelves I., Lázaro M.J., Moliner R. Kinetic study of the thermal decomposition of methane using carbonaceous catalysts. Chem. Eng. J. 2008, 138:301-306.
-
(2008)
Chem. Eng. J.
, vol.138
, pp. 301-306
-
-
Pinilla, J.L.1
Suelves, I.2
Lázaro, M.J.3
Moliner, R.4
-
30
-
-
56749178671
-
Kinetic modelling of methane decomposition in a tubular solar reactor
-
Rodat S., Abanades S., Coulie J., Flamant G. Kinetic modelling of methane decomposition in a tubular solar reactor. Chem. Eng. J. 2009, 146:120-127.
-
(2009)
Chem. Eng. J.
, vol.146
, pp. 120-127
-
-
Rodat, S.1
Abanades, S.2
Coulie, J.3
Flamant, G.4
-
32
-
-
3843123062
-
2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation
-
2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Appl. Catal. A - Gen. 2004, 272:219-227.
-
(2004)
Appl. Catal. A - Gen.
, vol.272
, pp. 219-227
-
-
Zavarukhin, S.G.1
Kuvshinov, G.G.2
-
33
-
-
67651070600
-
Deactivation of palm shell-based activated carbon catalyst used for hydrogen production by thermocatalytic decomposition of methane
-
Abbas H.F., Wan Daud W.M.A. Deactivation of palm shell-based activated carbon catalyst used for hydrogen production by thermocatalytic decomposition of methane. Int. J. Hydrogen Energy 2009, 34:6231-6241.
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 6231-6241
-
-
Abbas, H.F.1
Wan Daud, W.M.A.2
-
36
-
-
1542358067
-
Formation of filamentous carbons over supported Fe catalysts through methane decomposition
-
Takenaka S., Serizawa M., Otsuka K. Formation of filamentous carbons over supported Fe catalysts through methane decomposition. J. Catal. 2004, 222:520-531.
-
(2004)
J. Catal.
, vol.222
, pp. 520-531
-
-
Takenaka, S.1
Serizawa, M.2
Otsuka, K.3
-
37
-
-
0842285843
-
Atomic-scale imaging of carbon nanofibre growth
-
Helveg S., López-Cartes C., Sehested J., Hansen P.L., Clausen B.S., Rostrup-Nielsen J.R., Abild-Pedersen F., Nørskov J.K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427:426-429.
-
(2004)
Nature
, vol.427
, pp. 426-429
-
-
Helveg, S.1
López-Cartes, C.2
Sehested, J.3
Hansen, P.L.4
Clausen, B.S.5
Rostrup-Nielsen, J.R.6
Abild-Pedersen, F.7
Nørskov, J.K.8
-
38
-
-
58549106332
-
Fabrication of single-wall carbon nanotubes within the channels of a mesoporous material by catalyst-supported chemical vapor deposition
-
Kobayashi K., Kitaura R., Kumai Y., Goto Y., Imagaki S., Shinohara H. Fabrication of single-wall carbon nanotubes within the channels of a mesoporous material by catalyst-supported chemical vapor deposition. Carbon 2009, 47:722-730.
-
(2009)
Carbon
, vol.47
, pp. 722-730
-
-
Kobayashi, K.1
Kitaura, R.2
Kumai, Y.3
Goto, Y.4
Imagaki, S.5
Shinohara, H.6
-
41
-
-
0347573855
-
Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts
-
Zhang T., Amiridis M.D. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl. Catal. A: Gen. 1998, 167:161-172.
-
(1998)
Appl. Catal. A: Gen.
, vol.167
, pp. 161-172
-
-
Zhang, T.1
Amiridis, M.D.2
-
42
-
-
30244441163
-
Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction
-
Avdeeva L.B., Goncharova O.V., Kochubey D.I., Zaikovskii V.I., Plyasova L.M., Novgorodov B.N., Shaikhutdinov S.K. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction. Appl. Catal. A 1996, 141:117-129.
-
(1996)
Appl. Catal. A
, vol.141
, pp. 117-129
-
-
Avdeeva, L.B.1
Goncharova, O.V.2
Kochubey, D.I.3
Zaikovskii, V.I.4
Plyasova, L.M.5
Novgorodov, B.N.6
Shaikhutdinov, S.K.7
-
43
-
-
0033591703
-
Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures
-
Li Y.D., Chen J.L., Ma Y.M., Zhao J.B., Qin Y.N., Chang L. Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures. Chem. Commun. 1999, 1141-1142.
-
(1999)
Chem. Commun.
, pp. 1141-1142
-
-
Li, Y.D.1
Chen, J.L.2
Ma, Y.M.3
Zhao, J.B.4
Qin, Y.N.5
Chang, L.6
-
44
-
-
74249105913
-
Pore geometry influence on the deactivation behavior of Ni-based catalysts for simultaneous production of hydrogen and nanocarbon
-
Salmones J., Wang J.A., Valenzuela M.A., Sanchez E., Garcia A. Pore geometry influence on the deactivation behavior of Ni-based catalysts for simultaneous production of hydrogen and nanocarbon. Catal. Today 2009, 148:134-139.
-
(2009)
Catal. Today
, vol.148
, pp. 134-139
-
-
Salmones, J.1
Wang, J.A.2
Valenzuela, M.A.3
Sanchez, E.4
Garcia, A.5
-
45
-
-
67650135738
-
Doped Ni thin layer catalysts for catalytic decomposition of natural gas to produce hydrogen
-
Italiano G., Espro C., Arena F., Parmaliana A., Frusteri F. Doped Ni thin layer catalysts for catalytic decomposition of natural gas to produce hydrogen. Appl. Catal. A - Gen. 2009, 365:122-129.
-
(2009)
Appl. Catal. A - Gen.
, vol.365
, pp. 122-129
-
-
Italiano, G.1
Espro, C.2
Arena, F.3
Parmaliana, A.4
Frusteri, F.5
-
49
-
-
84872424494
-
Decomposition of methane over unsupported porous nickel and alloy catalyst
-
Lua A.C., Wang H.Y. Decomposition of methane over unsupported porous nickel and alloy catalyst. Appl. Catal. B: Environ. 2013, 132-133:469-478.
-
(2013)
Appl. Catal. B: Environ.
, pp. 469-478
-
-
Lua, A.C.1
Wang, H.Y.2
-
50
-
-
84871663151
-
Development of metallic nickel nanoparticle catalyst for the decomposition of methane into hydrogen and carbon nanofibers
-
Wang H.Y., Lua A.C. Development of metallic nickel nanoparticle catalyst for the decomposition of methane into hydrogen and carbon nanofibers. J. Phys. Chem. C 2012, 116:26765-26775.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 26765-26775
-
-
Wang, H.Y.1
Lua, A.C.2
-
51
-
-
12344267759
-
Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres
-
Wang X., Song J.M., Gao L.S., Jin J.Y., Zheng H.G., Zhang Z.D. Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. Nanotechnology 2005, 16:37-39.
-
(2005)
Nanotechnology
, vol.16
, pp. 37-39
-
-
Wang, X.1
Song, J.M.2
Gao, L.S.3
Jin, J.Y.4
Zheng, H.G.5
Zhang, Z.D.6
-
53
-
-
79951578998
-
Review of methane catalytic cracking for hydrogen production
-
Amin A.M., Croiset E., Epling W. Review of methane catalytic cracking for hydrogen production. Int. J. Hydrogen Energy 2011, 36:2904-2935.
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, pp. 2904-2935
-
-
Amin, A.M.1
Croiset, E.2
Epling, W.3
-
55
-
-
43649097414
-
Optimization and scale-up of CNF production based on intrinsic kinetic data obtained from TEOM
-
Kvande I., Chen D., Yu Z., Ronning M., Holmen A. Optimization and scale-up of CNF production based on intrinsic kinetic data obtained from TEOM. J. Catal. 2008, 256:204-214.
-
(2008)
J. Catal.
, vol.256
, pp. 204-214
-
-
Kvande, I.1
Chen, D.2
Yu, Z.3
Ronning, M.4
Holmen, A.5
-
57
-
-
77958154518
-
Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: apparent kinetic, deactivation and diffusional limitation studies
-
Abbas H.F., Daud W. Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: apparent kinetic, deactivation and diffusional limitation studies. Int. J. Hydrogen Energy 2010, 35:12268-12276.
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 12268-12276
-
-
Abbas, H.F.1
Daud, W.2
-
58
-
-
0019913133
-
Kinetic equations of mechanistic type with nonseparable variables for catalyst deactivation by coke. Models and data analysis methods
-
Asua
-
Corella J.M., Asua Kinetic equations of mechanistic type with nonseparable variables for catalyst deactivation by coke. Models and data analysis methods. Ind. Eng. Chem. Process Des. Dev. 1982, 21:55-61.
-
(1982)
Ind. Eng. Chem. Process Des. Dev.
, vol.21
, pp. 55-61
-
-
Corella, J.M.1
-
59
-
-
0029326309
-
Kinetic modelling of the deactivation of a commercial silica-alumina catalyst during isopropylbenzene cracking
-
Rodríguez J.C., Peña J.A., Monzón A., Hughes R., Li K. Kinetic modelling of the deactivation of a commercial silica-alumina catalyst during isopropylbenzene cracking. Chem. Eng. J. Biochem. Eng. J. 1995, 58:7-13.
-
(1995)
Chem. Eng. J. Biochem. Eng. J.
, vol.58
, pp. 7-13
-
-
Rodríguez, J.C.1
Peña, J.A.2
Monzón, A.3
Hughes, R.4
Li, K.5
-
60
-
-
77949869022
-
Carbon nanotube growth by catalytic chemical vapor deposition: a phenomenological kinetic model
-
Latorre N., Romeo E., Cazana F., Ubieto T., Royo C., Villacampa J.J., Monzon A. Carbon nanotube growth by catalytic chemical vapor deposition: a phenomenological kinetic model. J. Phys. Chem. C 2010, 114:4773-4782.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 4773-4782
-
-
Latorre, N.1
Romeo, E.2
Cazana, F.3
Ubieto, T.4
Royo, C.5
Villacampa, J.J.6
Monzon, A.7
-
61
-
-
77955833068
-
Kinetics of carbon nanotubes growth on a Ni-Mg-Al catalyst by CCVD of methane: influence of catalyst deactivation
-
Latorre N., Romeo E., Villacampa J.I., Cazana F., Royo C., Cazaña F., Monzón A. Kinetics of carbon nanotubes growth on a Ni-Mg-Al catalyst by CCVD of methane: influence of catalyst deactivation. Catal. Today 2010, 154:217-223.
-
(2010)
Catal. Today
, vol.154
, pp. 217-223
-
-
Latorre, N.1
Romeo, E.2
Villacampa, J.I.3
Cazana, F.4
Royo, C.5
Cazaña, F.6
Monzón, A.7
-
62
-
-
12344293793
-
Decomposition of methane over a Ni-Cu-MgO catalyst to produce hydrogen and carbon nanofibers
-
Wang H.Y., Baker R.T.K. Decomposition of methane over a Ni-Cu-MgO catalyst to produce hydrogen and carbon nanofibers. J. Phys. Chem. B 2004, 108:20273-20277.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 20273-20277
-
-
Wang, H.Y.1
Baker, R.T.K.2
-
63
-
-
0001827436
-
Deactivation of copper nickel catalysts due to changes in surface composition
-
Rodriguez N.M., Kim M.S., Baker R.T.K. Deactivation of copper nickel catalysts due to changes in surface composition. J. Catal. 1993, 140:16-29.
-
(1993)
J. Catal.
, vol.140
, pp. 16-29
-
-
Rodriguez, N.M.1
Kim, M.S.2
Baker, R.T.K.3
|