-
1
-
-
55149088329
-
Convex multi-task feature learning
-
Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Machine Learning 73(3), 243-272 (2006)
-
(2006)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
2
-
-
31144440012
-
Multidimensional scaling of emotional responses to music: The effect of musical expertise and of the duration of the excerpts
-
Bigand, E., Vieillard, S., Madurell, F., Marozeau, J., Dacquet, A.: Multidimensional scaling of emotional responses to music: The effect of musical expertise and of the duration of the excerpts. Cognition & Emotion 19(8), 1113-1139 (2005)
-
(2005)
Cognition & Emotion
, vol.19
, Issue.8
, pp. 1113-1139
-
-
Bigand, E.1
Vieillard, S.2
Madurell, F.3
Marozeau, J.4
Dacquet, A.5
-
3
-
-
0001560954
-
Information geometry and alternating minimization procedures
-
Csiszár, I., Tusnády, G.: Information geometry and alternating minimization procedures. Statistics and Decisions suppl (1), 205-237 (1984)
-
(1984)
Statistics and Decisions Suppl
, Issue.1
, pp. 205-237
-
-
Csiszár, I.1
Tusnády, G.2
-
6
-
-
84873695101
-
SMERS: Music Emotion Recognition Using Support Vector Regression
-
Han, B.-J., Rho, S., Dannenberg, R.B., Hwang, E.: SMERS: Music Emotion Recognition Using Support Vector Regression. In: International Society for Music Information Retrieval, Number Ismir, pp. 651-656 (2009)
-
(2009)
International Society for Music Information Retrieval, Number Ismir
, pp. 651-656
-
-
Han, B.-J.1
Rho, S.2
Dannenberg, R.B.3
Hwang, E.4
-
8
-
-
84873668220
-
Lyric text mining in music mood classification
-
Ismir
-
Hu, X., Downie, J.S., Ehmann, A.F.: Lyric text mining in music mood classification. Information Retrieval 183(Ismir), 411-416 (2009)
-
(2009)
Information Retrieval
, vol.183
, pp. 411-416
-
-
Hu, X.1
Downie, J.S.2
Ehmann, A.F.3
-
9
-
-
84873591302
-
Music emotion recognition: A state of the art review
-
Ismir
-
Kim, Y.E., Schmidt, E.M., Migneco, R., Morton, B.G., Richardson, P., Scott, J., Speck, J.A., Turnbull, D.: Music emotion recognition: a state of the art review. Information Retrieval (Ismir), 255-266 (2010)
-
(2010)
Information Retrieval
, pp. 255-266
-
-
Kim, Y.E.1
Schmidt, E.M.2
Migneco, R.3
Morton, B.G.4
Richardson, P.5
Scott, J.6
Speck, J.A.7
Turnbull, D.8
-
10
-
-
84873572465
-
Mir in matlab (ii): A toolbox for musical feature extraction from audio
-
Lartillot, O., Toiviainen, P.: Mir in matlab (ii): A toolbox for musical feature extraction from audio. Spectrum (Ii), 127-130 (2007)
-
(2007)
Spectrum
, Issue.II
, pp. 127-130
-
-
Lartillot, O.1
Toiviainen, P.2
-
12
-
-
80051634366
-
Know thy neighbor: Combining audio features and social tags for effective music similarity
-
Nanopoulos, A., Karydis, I.: Know thy neighbor: Combining audio features and social tags for effective music similarity. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 165-168 (2011)
-
(2011)
International Conference on Acoustics, Speech, and Signal Processing
, pp. 165-168
-
-
Nanopoulos, A.1
Karydis, I.2
-
13
-
-
0004160296
-
-
Cambridge University Press
-
Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions, vol. 18. Cambridge University Press (1988)
-
(1988)
The Cognitive Structure of Emotions
, vol.18
-
-
Ortony, A.1
Clore, G.L.2
Collins, A.3
-
14
-
-
70349464889
-
Emotion-based music retrieval on a well-reduced audio feature space
-
Ruxanda, M.M., Chua, B.Y., Nanopoulos, A., Jensen, C.S.: Emotion-based music retrieval on a well-reduced audio feature space. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 181-184 (2009)
-
(2009)
International Conference on Acoustics, Speech, and Signal Processing
, pp. 181-184
-
-
Ruxanda, M.M.1
Chua, B.Y.2
Nanopoulos, A.3
Jensen, C.S.4
-
15
-
-
27944506733
-
Which emotions can be induced by music? What are the underlying mechanisms? And how can we measure them?
-
Scherer, K.: Which emotions can be induced by music? what are the underlying mechanisms? and how can we measure them? Journal of NewMusic Research 33(3), 239-251 (2004)
-
(2004)
Journal of NewMusic Research
, vol.33
, Issue.3
, pp. 239-251
-
-
Scherer, K.1
-
16
-
-
0142093202
-
Experiencing activation: Energetic arousal and tense arousal are not mixtures of valence and activation
-
Schimmack, U., Reisenzein, R.: Experiencing activation: energetic arousal and tense arousal are not mixtures of valence and activation. Emotion 2(4) (2002)
-
(2002)
Emotion
, vol.2
, Issue.4
-
-
Schimmack, U.1
Reisenzein, R.2
-
17
-
-
77952382770
-
Feature selection for content-based, timevarying musical emotion regression categories and subject descriptors
-
Schmidt, E.M., Turnbull, D., Kim, Y.E.: Feature selection for content-based, timevarying musical emotion regression categories and subject descriptors. Spectrum, 267-273 (2010)
-
(2010)
Spectrum
, pp. 267-273
-
-
Schmidt, E.M.1
Turnbull, D.2
Kim, Y.E.3
-
19
-
-
72449136744
-
Combining audio content and social context for semantic music discovery
-
Turnbull, D.R., Barrington, L., Lanckriet, G.R.G., Yazdani, M.: Combining audio content and social context for semantic music discovery. In: Research and Development in Information Retrieval, pp. 387-394 (2009)
-
(2009)
Research and Development in Information Retrieval
, pp. 387-394
-
-
Turnbull, D.R.1
Barrington, L.2
Lanckriet, G.R.G.3
Yazdani, M.4
-
20
-
-
84892841120
-
Large-scale music annotation and retrieval: Learning to rank in joint semantic spaces
-
abs/1105.5196
-
Weston, J., Bengio, S., Hamel, P.: Large-scale music annotation and retrieval: Learning to rank in joint semantic spaces. CoRR, abs/1105.5196 (2011)
-
(2011)
CoRR
-
-
Weston, J.1
Bengio, S.2
Hamel, P.3
-
21
-
-
33947194180
-
Graph embedding and extensions: A general framework for dimensionality reduction
-
Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 40-51 (2007)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.-J.4
Yang, Q.5
Lin, S.6
|