메뉴 건너뛰기




Volumn 113, Issue 2, 2014, Pages 610-619

Predicting body fat percentage based on gender, age and BMI by using artificial neural networks

Author keywords

Artificial neural networks; Body composition; Body fat percentage; Cardiovascular risk; Obesity

Indexed keywords

BIOELECTRICAL IMPEDANCE MEASUREMENTS; BODY COMPOSITION; BODY FATS; BODY MASS INDEX; CARDIOVASCULAR RISK; NON-INVASIVE PREDICTION; OBESITY; PREDICTIVE ACCURACY;

EID: 84892827712     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2013.10.013     Document Type: Article
Times cited : (38)

References (36)
  • 1
    • 73449147262 scopus 로고    scopus 로고
    • Global health risks: mortality and burden of disease attributable to selected major risks
    • Geneva: WHO, December. Assessed at:
    • Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: WHO, December 2009. Assessed at: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf.
    • (2009)
  • 2
    • 19044393872 scopus 로고    scopus 로고
    • Adipose tissue, inflammation, and cardiovascular disease
    • Berg A.H., Scherer P.E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 2005, 96:939-949.
    • (2005) Circ. Res. , vol.96 , pp. 939-949
    • Berg, A.H.1    Scherer, P.E.2
  • 3
    • 70349564109 scopus 로고    scopus 로고
    • Therapeutic options for treatment of cardiometabolic risk
    • Stokić E., Tomić-Naglić D., Derić M., Jorga J. Therapeutic options for treatment of cardiometabolic risk. Med. Pregl. 2009, 62(Suppl 3):54-58.
    • (2009) Med. Pregl. , vol.62 , Issue.SUPPL. 3 , pp. 54-58
    • Stokić, E.1    Tomić-Naglić, D.2    Derić, M.3    Jorga, J.4
  • 4
    • 77956612612 scopus 로고    scopus 로고
    • The synthesis of the rough set model for the better applicability of sagittal abdominal diameter in identifying high risk patients
    • Stokić E., Brtka V., Srdić B. The synthesis of the rough set model for the better applicability of sagittal abdominal diameter in identifying high risk patients. Comput. Biol. Med. 2010 Sep, 40(9):786-790.
    • (2010) Comput. Biol. Med. , vol.40 , Issue.9 , pp. 786-790
    • Stokić, E.1    Brtka, V.2    Srdić, B.3
  • 5
    • 0037403774 scopus 로고    scopus 로고
    • Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots
    • Misra A., Vikram N.K. Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition 2003, 19:457-466.
    • (2003) Nutrition , vol.19 , pp. 457-466
    • Misra, A.1    Vikram, N.K.2
  • 6
    • 5444246829 scopus 로고    scopus 로고
    • Central obesity and the metabolic syndrome: implications for primary care providers
    • Appel S.J., Jones E.D., Kennedy-Malone L. Central obesity and the metabolic syndrome: implications for primary care providers. J. Am. Acad. Nurse Pract. 2004, 16(8):335-342.
    • (2004) J. Am. Acad. Nurse Pract. , vol.16 , Issue.8 , pp. 335-342
    • Appel, S.J.1    Jones, E.D.2    Kennedy-Malone, L.3
  • 7
    • 9444242742 scopus 로고    scopus 로고
    • Comparison of predicted body fat percentage from anthropometric methods and from impedance in university students
    • Arroyo M., Rocandio A.M., Ansotegui L., Herrera H., Salces I., Rebato E. Comparison of predicted body fat percentage from anthropometric methods and from impedance in university students. Br. J. Nutr. 2004, 92:827-832.
    • (2004) Br. J. Nutr. , vol.92 , pp. 827-832
    • Arroyo, M.1    Rocandio, A.M.2    Ansotegui, L.3    Herrera, H.4    Salces, I.5    Rebato, E.6
  • 8
    • 77957341769 scopus 로고    scopus 로고
    • The relationship between BMI and percent body fat, measured by bioelectrical impedance, in a large adult sample is curvilinear and influenced by age and sex
    • Meeuwsen S., Horgan G.W., Elia M. The relationship between BMI and percent body fat, measured by bioelectrical impedance, in a large adult sample is curvilinear and influenced by age and sex. Clin. Nutr. 2010, 29:560-566.
    • (2010) Clin. Nutr. , vol.29 , pp. 560-566
    • Meeuwsen, S.1    Horgan, G.W.2    Elia, M.3
  • 10
    • 0034569866 scopus 로고    scopus 로고
    • Obesity: preventing and managing the global epidemic
    • World Health Organization. Report of a WHO consultation.
    • World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000;894:1-253.
    • (2000) World Health Organ Tech Rep Ser , vol.894 , pp. 1-253
  • 11
    • 21944456572 scopus 로고    scopus 로고
    • Waist circumference and abdominal adipose tissue distribution: influence of age and sex
    • Kuk J.L., Lee S., Heymsfield S.B., Ross R. Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am. J. Clin. Nutr. 2005, 81:1330-1334.
    • (2005) Am. J. Clin. Nutr. , vol.81 , pp. 1330-1334
    • Kuk, J.L.1    Lee, S.2    Heymsfield, S.B.3    Ross, R.4
  • 12
    • 34248550944 scopus 로고    scopus 로고
    • Aging of adipocytes: potential impact of inherent, depot-specific mechanisms
    • Cartwright M.J., Tchkonia T., Kirkland J.L. Aging of adipocytes: potential impact of inherent, depot-specific mechanisms. Exp. Gerontol. 2007, 42:463-471.
    • (2007) Exp. Gerontol. , vol.42 , pp. 463-471
    • Cartwright, M.J.1    Tchkonia, T.2    Kirkland, J.L.3
  • 13
    • 0030054162 scopus 로고    scopus 로고
    • How useful is body mass index for comparison of body fatness across age, sex and ethnic groups?
    • Gallagher D., Visser M., Sepúlveda D., Pierson R., Harris T., Heymsfield S.B. How useful is body mass index for comparison of body fatness across age, sex and ethnic groups?. Am. J. Epidemiol. 1996, 143(3):228-239.
    • (1996) Am. J. Epidemiol. , vol.143 , Issue.3 , pp. 228-239
    • Gallagher, D.1    Visser, M.2    Sepúlveda, D.3    Pierson, R.4    Harris, T.5    Heymsfield, S.B.6
  • 16
    • 0025847748 scopus 로고
    • Body mass index as a measure of body fatness: age- and sex- specific prediction formulas
    • Deurenberg P., Weststrate J.A., Seidell J.C. Body mass index as a measure of body fatness: age- and sex- specific prediction formulas. Br. J. Nutr. 1991, 65:105-114.
    • (1991) Br. J. Nutr. , vol.65 , pp. 105-114
    • Deurenberg, P.1    Weststrate, J.A.2    Seidell, J.C.3
  • 17
    • 0031767483 scopus 로고    scopus 로고
    • Body mass index and percent body fat. A meta analysis among different ethnic groups
    • Deurenberg P., Yap M., van Staveren W.A. Body mass index and percent body fat. A meta analysis among different ethnic groups. Int. J. Obes. Relat. Metab. Disord. 1998, 22:1164-1171.
    • (1998) Int. J. Obes. Relat. Metab. Disord. , vol.22 , pp. 1164-1171
    • Deurenberg, P.1    Yap, M.2    van Staveren, W.A.3
  • 18
    • 0021714977 scopus 로고
    • Research design and analysis of data procedures for predicting body density
    • Jackson A.S. Research design and analysis of data procedures for predicting body density. Med. Sci. Sports Exercise 1984, 5:616-620.
    • (1984) Med. Sci. Sports Exercise , vol.5 , pp. 616-620
    • Jackson, A.S.1
  • 19
    • 0019312261 scopus 로고
    • Generalized equations for predicting body density of women
    • Jackson A.S., Pollock M.L., Ward A. Generalized equations for predicting body density of women. Med. Sci. Sports Exercise 1980, 12:175-182.
    • (1980) Med. Sci. Sports Exercise , vol.12 , pp. 175-182
    • Jackson, A.S.1    Pollock, M.L.2    Ward, A.3
  • 22
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • Baxt W.G. Application of artificial neural networks to clinical medicine. Lancet 1995, 346:1135-1138.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 23
    • 67649109094 scopus 로고    scopus 로고
    • Intelligent and Effective Heart Attack Prediction System Using Data Mining and Artificial Neural Network
    • Patil S.B., Kumaraswamy Y.S. Intelligent and Effective Heart Attack Prediction System Using Data Mining and Artificial Neural Network. Eur. J. Sci. Res. 2009, 31(4):642-656.
    • (2009) Eur. J. Sci. Res. , vol.31 , Issue.4 , pp. 642-656
    • Patil, S.B.1    Kumaraswamy, Y.S.2
  • 24
    • 82655187449 scopus 로고    scopus 로고
    • Prediction of metabolic syndrome using artificial neural network system based on clinical data including insulin resistance index and serum adiponectin
    • Hirose H., Takayama T., Hozawa S., Hibi T., Saito I. Prediction of metabolic syndrome using artificial neural network system based on clinical data including insulin resistance index and serum adiponectin. Comput. Biol. Med. 2011, 41:1051-1056.
    • (2011) Comput. Biol. Med. , vol.41 , pp. 1051-1056
    • Hirose, H.1    Takayama, T.2    Hozawa, S.3    Hibi, T.4    Saito, I.5
  • 25
    • 77950326901 scopus 로고    scopus 로고
    • Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models
    • Lin C.C., Bai Y.M., Chen J.Y., Hwang T.J., Chen T.T., Chiu H.W., Li Y.C. Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models. J. Clin. Psychiatry 2010, 71(3):225-234.
    • (2010) J. Clin. Psychiatry , vol.71 , Issue.3 , pp. 225-234
    • Lin, C.C.1    Bai, Y.M.2    Chen, J.Y.3    Hwang, T.J.4    Chen, T.T.5    Chiu, H.W.6    Li, Y.C.7
  • 26
    • 84877687662 scopus 로고    scopus 로고
    • A primary estimation of the cardiometabolic risk by using artificial neural networks
    • Kupusinac A., Doroslovački R., Malbaški D., Srdić B., Stokić E. A primary estimation of the cardiometabolic risk by using artificial neural networks. Comput. Biol. Med. 2013 Jul, 43(6):751-757.
    • (2013) Comput. Biol. Med. , vol.43 , Issue.6 , pp. 751-757
    • Kupusinac, A.1    Doroslovački, R.2    Malbaški, D.3    Srdić, B.4    Stokić, E.5
  • 27
    • 84891492799 scopus 로고    scopus 로고
    • Determination of WHtR limit for predicting hyperglycemia in obese persons by using artificial neural networks
    • Kupusinac A., Stokić E., Srdić B. Determination of WHtR limit for predicting hyperglycemia in obese persons by using artificial neural networks. TEM J. 2012, 1(4):270-272.
    • (2012) TEM J. , vol.1 , Issue.4 , pp. 270-272
    • Kupusinac, A.1    Stokić, E.2    Srdić, B.3
  • 28
    • 84892780678 scopus 로고    scopus 로고
    • Estimating SAD low-limits for the adverse metabolic profile by using artificial neural networks
    • Stokić E., Srdić Galić B., Kupusinac A., Doroslovački R. Estimating SAD low-limits for the adverse metabolic profile by using artificial neural networks. TEM J. 2013, 2(2):115-119.
    • (2013) TEM J. , vol.2 , Issue.2 , pp. 115-119
    • Stokić, E.1    Srdić Galić, B.2    Kupusinac, A.3    Doroslovački, R.4
  • 29
  • 30
    • 68349093770 scopus 로고    scopus 로고
    • A gluco-metabolic risk index with cardiovascular risk stratification potential in patients with coronary artery disease
    • Anselmino M., Malmberg K., Rydèn L., Öhrvik J. A gluco-metabolic risk index with cardiovascular risk stratification potential in patients with coronary artery disease. Diabetes Vasc. Dis. Res. 2009, 6(2):62-70.
    • (2009) Diabetes Vasc. Dis. Res. , vol.6 , Issue.2 , pp. 62-70
    • Anselmino, M.1    Malmberg, K.2    Rydèn, L.3    Öhrvik, J.4
  • 31
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko D.L. Approximation by superpositions of a sigmoidal function. Math. Control, Signals, Syst. 1989, 2:303-314.
    • (1989) Math. Control, Signals, Syst. , vol.2 , pp. 303-314
    • Cybenko, D.L.1
  • 35
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann R.P. An introduction to computing with neural nets. IEEE ASSP Mag. 1987 April, 4:4-22.
    • (1987) IEEE ASSP Mag. , vol.4 , pp. 4-22
    • Lippmann, R.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.