-
1
-
-
84883220924
-
Activated graphenebased carbons as supercapacitor electrodes with macro- and mesopores
-
Kim T, Jung G, Yoo S, Suh KS, Ruoff RS. Activated graphenebased carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 2013; 7 (8): 6899-905.
-
(2013)
ACS Nano
, vol.7
, Issue.8
, pp. 6899-6905
-
-
Kim, T.1
Jung, G.2
Yoo, S.3
Suh, K.S.4
Ruoff, R.S.5
-
2
-
-
84885417154
-
Large-area flexible core-shell graphene/porous carbon woven fabric films for fiber supercapacitor electrodes
-
Li X, Zang X, Li Z, Li X, Li P, Sun P, et al. Large-area flexible core-shell graphene/porous carbon woven fabric films for fiber supercapacitor electrodes. Adv Funct Mater 2013. http://dx.doi.org/10.1002/adfm.201300464.
-
(2013)
Adv Funct Mater
-
-
Li, X.1
Zang, X.2
Li, Z.3
Li, X.4
Li, P.5
Sun, P.6
-
3
-
-
84863012071
-
Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors
-
Huang Z-D, Zhang B, Oh S-W, Zheng Q-B, Lin X-Y, Yousefi N, et al. Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J Mater Chem 2012; 22 (8): 3591-9.
-
(2012)
J Mater Chem
, vol.22
, Issue.8
, pp. 3591-3599
-
-
Huang, Z.-D.1
Zhang, B.2
Oh, S.-W.3
Zheng, Q.-B.4
Lin, X.-Y.5
Yousefi, N.6
-
4
-
-
84878230759
-
Capacitive energy storage in nanostructured carbon-electrolyte systems
-
Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res 2013; 46 (5): 1094-103.
-
(2013)
Acc Chem Res
, vol.46
, Issue.5
, pp. 1094-1103
-
-
Simon, P.1
Gogotsi, Y.2
-
5
-
-
54949139227
-
Materials for electrochemical capacitors
-
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008; 7 (11): 845-54.
-
(2008)
Nat Mater
, vol.7
, Issue.11
, pp. 845-854
-
-
Simon, P.1
Gogotsi, Y.2
-
6
-
-
84868092240
-
Chemical activation of carbon nano-onions for highrate supercapacitor electrodes
-
Gao Y, Zhou YS, Qian M, He XN, Redepenning J, Goodman P, et al. Chemical activation of carbon nano-onions for highrate supercapacitor electrodes. Carbon 2013; 51:52-8.
-
(2013)
Carbon
, vol.51
, pp. 52-58
-
-
Gao, Y.1
Zhou, Y.S.2
Qian, M.3
He, X.N.4
Redepenning, J.5
Goodman, P.6
-
7
-
-
84882694844
-
Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitor
-
Qie L, Chen W, Xu H, Xiong X-Q, Jiang Y, Zou F, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitor. Energy Environ Sci 2013; 6 (8): 2497-504.
-
(2013)
Energy Environ Sci
, vol.6
, Issue.8
, pp. 2497-2504
-
-
Qie, L.1
Chen, W.2
Xu, H.3
Xiong, X.-Q.4
Jiang, Y.5
Zou, F.6
-
8
-
-
84881087630
-
Advanced porous carbon electrodes for electrochemical capacitors
-
Zhang LL, Gu Y, Zhao G. Advanced porous carbon electrodes for electrochemical capacitors. J Mater Chem A 2013; 1 (33): 9395-408.
-
(2013)
J Mater Chem A
, vol.1
, Issue.33
, pp. 9395-9408
-
-
Zhang, L.L.1
Gu, Y.2
Zhao, G.3
-
9
-
-
84875173780
-
Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors
-
Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep 2013; 3:1408.
-
(2013)
Sci Rep
, vol.3
, pp. 1408
-
-
Zhang, L.1
Zhang, F.2
Yang, X.3
Long, G.4
Wu, Y.5
Zhang, T.6
-
10
-
-
84873412673
-
Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes
-
Zhang JB, Jin LJ, Cheng J, Hu HQ. Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes. Carbon 2013; 55:221-32.
-
(2013)
Carbon
, vol.55
, pp. 221-232
-
-
Zhang, J.B.1
Jin, L.J.2
Cheng, J.3
Hu, H.Q.4
-
11
-
-
84877151647
-
Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors
-
Li Y, Li Z, Shen PK. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 2013; 25 (17): 2474-80.
-
(2013)
Adv Mater
, vol.25
, Issue.17
, pp. 2474-2480
-
-
Li, Y.1
Li, Z.2
Shen, P.K.3
-
12
-
-
84859208187
-
High-performance aqueous supercapacitors based on hierarchically porous graphitized carbon
-
Chen Z, Weng D, Sohn HS, Cai M, Lu YF. High-performance aqueous supercapacitors based on hierarchically porous graphitized carbon. RSC Adv 2012; 2 (5): 1755-8.
-
(2012)
RSC Adv
, vol.2
, Issue.5
, pp. 1755-1758
-
-
Chen, Z.1
Weng, D.2
Sohn, H.S.3
Cai, M.4
Lu, Y.F.5
-
13
-
-
84861575077
-
Improved electrochemical performance of hierarchical porous carbon/polyaniline composites
-
Hu J, Wang H, Huang X. Improved electrochemical performance of hierarchical porous carbon/polyaniline composites. Electrochim Acta 2012; 74:98-104.
-
(2012)
Electrochim Acta
, vol.74
, pp. 98-104
-
-
Hu, J.1
Wang, H.2
Huang, X.3
-
14
-
-
80053297885
-
Facilitated ion transport in all-solid-state flexible supercapacitors
-
Choi BG, Hong J, Hong WH, Hammond PT, Park H. Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 2011; 5 (9): 7205-13.
-
(2011)
ACS Nano
, vol.5
, Issue.9
, pp. 7205-7213
-
-
Choi, B.G.1
Hong, J.2
Hong, W.H.3
Hammond, P.T.4
Park, H.5
-
15
-
-
84862172623
-
Fabrication and electrochemical performances of hierarchical porous Ni (OH)2 nanoflakes anchored on graphene sheets
-
Yan J, Sun W, Wei T, Zhang Q, Fan Z, Wei F. Fabrication and electrochemical performances of hierarchical porous Ni (OH)2 nanoflakes anchored on graphene sheets. J Mater Chem 2012; 22 (23): 11494-502.
-
(2012)
J Mater Chem
, vol.22
, Issue.23
, pp. 11494-11502
-
-
Yan, J.1
Sun, W.2
Wei, T.3
Zhang, Q.4
Fan, Z.5
Wei, F.6
-
16
-
-
84862776795
-
High-performance supercapacitor electrodes based on highly corrugated graphene sheets
-
Yan J, Liu J, Fan Z, Wei T, Zhang L. High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 2012; 50 (6): 2179-88.
-
(2012)
Carbon
, vol.50
, Issue.6
, pp. 2179-2188
-
-
Yan, J.1
Liu, J.2
Fan, Z.3
Wei, T.4
Zhang, L.5
-
17
-
-
84863696671
-
Nanostructured ternary electrodes for energy-storage applications
-
Rakhi RB, Chen W, Cha D, Alshareef HN. Nanostructured ternary electrodes for energy-storage applications. Adv Energy Mater 2012; 2 (3): 381-9.
-
(2012)
Adv Energy Mater
, vol.2
, Issue.3
, pp. 381-389
-
-
Rakhi, R.B.1
Chen, W.2
Cha, D.3
Alshareef, H.N.4
-
18
-
-
84878576224
-
Twodimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors
-
Wang Q, Yan J, Wei T, Feng J, Ren Y, Fan Z, et al. Twodimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 2013; 60:481-7.
-
(2013)
Carbon
, vol.60
, pp. 481-487
-
-
Wang, Q.1
Yan, J.2
Wei, T.3
Feng, J.4
Ren, Y.5
Fan, Z.6
-
19
-
-
84880102408
-
Templated synthesis of nanostructured materials
-
Liu Y, Goebl J, Yin Y. Templated synthesis of nanostructured materials. Chem Soc Rev 2013; 42 (7): 2610-53.
-
(2013)
Chem Soc Rev
, vol.42
, Issue.7
, pp. 2610-2653
-
-
Liu, Y.1
Goebl, J.2
Yin, Y.3
-
20
-
-
84863680769
-
Templatedirected synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors
-
Fan Z, Liu Y, Yan J, Ning G, Wang Q, Wei T, et al. Templatedirected synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors. Adv Energy Mater 2012; 2 (4): 419-24.
-
(2012)
Adv Energy Mater
, vol.2
, Issue.4
, pp. 419-424
-
-
Fan, Z.1
Liu, Y.2
Yan, J.3
Ning, G.4
Wang, Q.5
Wei, T.6
-
21
-
-
84862557284
-
Towards textile energy storage from cotton tshirts
-
Bao L, Li X. Towards textile energy storage from cotton tshirts. Adv Mater 2012; 24 (24): 3246-52.
-
(2012)
Adv Mater
, vol.24
, Issue.24
, pp. 3246-3252
-
-
Bao, L.1
Li, X.2
-
22
-
-
79952581066
-
2 core/shell nanocable-carbon microfiber hybrid composites for highperformance supercapacitor electrodes
-
2 core/shell nanocable-carbon microfiber hybrid composites for highperformance supercapacitor electrodes. Nano Lett 2011; 11 (3): 1215-20.
-
(2011)
Nano Lett
, vol.11
, Issue.3
, pp. 1215-1220
-
-
Bao, L.H.1
Zang, J.F.2
Li, X.D.3
-
23
-
-
79955532150
-
Nitrogencontaining microporous carbon nanospheres with improved capacitive properties
-
Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q, et al. Nitrogencontaining microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 2010; 4:717-24.
-
(2010)
Energy Environ Sci
, vol.4
, pp. 717-724
-
-
Su, F.1
Poh, C.K.2
Chen, J.S.3
Xu, G.4
Wang, D.5
Li, Q.6
-
24
-
-
79959504796
-
Carbon-based supercapacitors produced by activation of grapheme
-
Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011; 332 (6037): 1537-41.
-
(2011)
Science
, vol.332
, Issue.6037
, pp. 1537-1541
-
-
Zhu, Y.1
Murali, S.2
Stoller, M.D.3
Ganesh, K.J.4
Cai, W.5
Ferreira, P.J.6
-
25
-
-
0242603790
-
Interpretation of Raman spectra of disordered and amorphous carbon
-
Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 2000; 61 (20): 14095-107.
-
(2000)
Phys Rev B
, vol.61
, Issue.20
, pp. 14095-14107
-
-
Ferrari, A.C.1
Robertson, J.2
-
26
-
-
20544440928
-
Influence of the atomic structure on the Raman spectra of graphite edges
-
Cancado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys Rev Lett 2004; 93 (24): 247401.
-
(2004)
Phys Rev Lett
, vol.93
, Issue.24
, pp. 247401
-
-
Cancado, L.G.1
Pimenta, M.A.2
Neves, B.R.A.3
Dantas, M.S.S.4
Jorio, A.5
-
27
-
-
84879665919
-
Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy
-
Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 2013; 7 (6): 5131-41.
-
(2013)
ACS Nano
, vol.7
, Issue.6
, pp. 5131-5141
-
-
Wang, H.1
Xu, Z.2
Kohandehghan, A.3
Li, Z.4
Cui, K.5
Tan, X.6
-
28
-
-
84873334395
-
Facile and rapid synthesis of highly crumpled graphene sheets as high-performance electrodes for supercapacitors
-
Yan J, Xiao Y, Ning G, Wei T, Fan Z. Facile and rapid synthesis of highly crumpled graphene sheets as high-performance electrodes for supercapacitors. RSC Adv 2013; 3 (8): 2566-71.
-
(2013)
RSC Adv
, vol.3
, Issue.8
, pp. 2566-2571
-
-
Yan, J.1
Xiao, Y.2
Ning, G.3
Wei, T.4
Fan, Z.5
-
29
-
-
84874739304
-
Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors
-
Yun YS, Im C, Park HH, Hwang I, Tak Y, Jin HJ. Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. J Power Sources 2013; 234:285-91.
-
(2013)
J Power Sources
, vol.234
, pp. 285-291
-
-
Yun, Y.S.1
Im, C.2
Park, H.H.3
Hwang, I.4
Tak, Y.5
Jin, H.J.6
-
30
-
-
84868146523
-
Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes
-
Ma C, Song Y, Shi JL, Zhang DQ, Zhai XL, Zhong M, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon 2013; 51:290-300.
-
(2013)
Carbon
, vol.51
, pp. 290-300
-
-
Ma, C.1
Song, Y.2
Shi, J.L.3
Zhang, D.Q.4
Zhai, X.L.5
Zhong, M.6
-
31
-
-
80051798701
-
Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes
-
Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 2011; 1 (3): 356-61.
-
(2011)
Adv Energy Mater
, vol.1
, Issue.3
, pp. 356-361
-
-
Wei, L.1
Sevilla, M.2
Fuertes, A.B.3
Mokaya, R.4
Yushin, G.5
-
32
-
-
79953647631
-
Compact-designed supercapacitors using free-standing single-walled carbon nanotube films
-
Niu ZQ, Zhou WY, Chen J, Feng GX, Li H, Ma WJ, et al. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci 2011; 4 (4): 1440-6.
-
(2011)
Energy Environ Sci
, vol.4
, Issue.4
, pp. 1440-1446
-
-
Niu, Z.Q.1
Zhou, W.Y.2
Chen, J.3
Feng, G.X.4
Li, H.5
Ma, W.J.6
-
33
-
-
84866530710
-
Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization
-
Zhou ZP, Wu XF. Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization. J Power Sources 2013; 222:410-6.
-
(2013)
J Power Sources
, vol.222
, pp. 410-416
-
-
Zhou, Z.P.1
Wu, X.F.2
-
34
-
-
84868092730
-
Threedimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization
-
Wen XR, Zhang DS, Shi LY, Yan TT, Wang H, Zhang JP. Threedimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. J Mater Chem 2012; 22 (45): 23835-44.
-
(2012)
J Mater Chem
, vol.22
, Issue.45
, pp. 23835-23844
-
-
Wen, X.R.1
Zhang, D.S.2
Shi, L.Y.3
Yan, T.T.4
Wang, H.5
Zhang, J.P.6
-
35
-
-
84862823967
-
High-performance supercapacitors based on hierarchically porous graphite particles
-
Chen Z, Wen J, Yan C, Rice L, Sohn H, Shen M, et al. High-performance supercapacitors based on hierarchically porous graphite particles. Adv Energy Mater 2011; 1 (4): 551-6.
-
(2011)
Adv Energy Mater
, vol.1
, Issue.4
, pp. 551-556
-
-
Chen, Z.1
Wen, J.2
Yan, C.3
Rice, L.4
Sohn, H.5
Shen, M.6
-
36
-
-
84861417704
-
High energy ultracapacitor based on carbon xerogel electrodes and sodium sulfate electrolyte
-
Staiti P, Arenillas A, Lufrano F, Menéndez JA. High energy ultracapacitor based on carbon xerogel electrodes and sodium sulfate electrolyte. J Power Sources 2012; 214: 137-41.
-
(2012)
J Power Sources
, vol.214
, pp. 137-141
-
-
Staiti, P.1
Arenillas, A.2
Lufrano, F.3
Menéndez, J.A.4
-
37
-
-
84866096067
-
High performance supercapacitor electrode based on graphene paper via flameinduced reduction of graphene oxide paper
-
Sun DF, Yan XB, Lang JW, Xue QJ. High performance supercapacitor electrode based on graphene paper via flameinduced reduction of graphene oxide paper. J Power Sources 2013; 222:52-8.
-
(2013)
J Power Sources
, vol.222
, pp. 52-58
-
-
Sun, D.F.1
Yan, X.B.2
Lang, J.W.3
Xue, Q.J.4
-
38
-
-
84875282080
-
Controlled electrochemical charge injection to maximize the energy density of supercapacitors
-
Weng Z, Li F, Wang D-W, Wen L, Cheng H-M. Controlled electrochemical charge injection to maximize the energy density of supercapacitors. Angew Chem Int Ed 2013; 52 (13): 3722-5.
-
(2013)
Angew Chem Int Ed
, vol.52
, Issue.13
, pp. 3722-3725
-
-
Weng, Z.1
Li, F.2
Wang, D.-W.3
Wen, L.4
Cheng, H.-M.5
-
39
-
-
84878320029
-
Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors
-
Wang L, Mu G, Tian C, Sun L, Zhou W, Yu P, et al. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. ChemSusChem 2013; 6 (5): 880-9.
-
(2013)
ChemSusChem
, vol.6
, Issue.5
, pp. 880-889
-
-
Wang, L.1
Mu, G.2
Tian, C.3
Sun, L.4
Zhou, W.5
Yu, P.6
-
40
-
-
84878125739
-
Active carbon wrapped carbon nanotube buckypaper for the electrode of electrochemical supercapacitors
-
Chen H, Di J, Jin Y, Chen M, Tian J, Li Q. Active carbon wrapped carbon nanotube buckypaper for the electrode of electrochemical supercapacitors. J Power Sources 2013; 237:325-31.
-
(2013)
J Power Sources
, vol.237
, pp. 325-331
-
-
Chen, H.1
Di Jin, J.Y.2
Chen, M.3
Tian, J.4
Li, Q.5
-
41
-
-
81555207939
-
True performance metrics in electrochemical energy storage
-
Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage. Science 2011; 334 (6058): 917-8.
-
(2011)
Science
, vol.334
, Issue.6058
, pp. 917-918
-
-
Gogotsi, Y.1
Simon, P.2
-
42
-
-
84869508740
-
Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors
-
Wang Q, Yan J, Wang Y, Ning G, Fan Z, Wei T, et al. Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon 2013; 52:209-18.
-
(2013)
Carbon
, vol.52
, pp. 209-218
-
-
Wang, Q.1
Yan, J.2
Wang, Y.3
Ning, G.4
Fan, Z.5
Wei, T.6
|