-
2
-
-
70350578648
-
On the singularity probability of discrete random matrices
-
J. Bourgain, V. Vu, and P. Wood, On the singularity probability of discrete random matrices, J Funct Anal, 258, 2010, 559-603.
-
(2010)
J Funct Anal
, vol.258
, pp. 559-603
-
-
Bourgain, J.1
Vu, V.2
Wood, P.3
-
3
-
-
84892798436
-
-
Bilinear and quadratic variants on the Littlewood-Offord problem, 2009, Submitted for Publication.
-
K. Costello, Bilinear and quadratic variants on the Littlewood-Offord problem, 2009, Submitted for Publication (2009).
-
(2009)
-
-
Costello, K.1
-
4
-
-
33751509641
-
Random symmetric matrices are almost surely non-singular
-
K. Costello, T. Tao and, V. Vu, Random symmetric matrices are almost surely non-singular, Duke Math J, 135, 2006, 395-413.
-
(2006)
Duke Math J
, vol.135
, pp. 395-413
-
-
Costello, K.1
Tao, T.2
Vu, V.3
-
5
-
-
77953168459
-
Wegner estimate and level repulsion for Wigner random matrices
-
L. Erdös, B. Schlein, and H.-T. Yau, Wegner estimate and level repulsion for Wigner random matrices, Int Math Res Not, 3, 2010, 436-479.
-
(2010)
Int Math Res Not
, vol.3
, pp. 436-479
-
-
Erdös, L.1
Schlein, B.2
Yau, H.-T.3
-
6
-
-
0000928677
-
Asymptotic expansions for bivariate von Mises functionals
-
F. Götze, Asymptotic expansions for bivariate von Mises functionals, Z Wahrsch Verw Gebiete 50 1979, 333-355.
-
(1979)
Z Wahrsch Verw Gebiete
, vol.50
, pp. 333-355
-
-
Götze, F.1
-
7
-
-
84968494236
-
On the probability that a random ±1-matrix is singular
-
J. Kahn, J. Komlós, and E. Szemerédi, On the probability that a random ±1-matrix is singular, J Am Math Soc, 8, (1995), 223-240.
-
(1995)
J Am Math Soc
, vol.8
, pp. 223-240
-
-
Kahn, J.1
Komlós, J.2
Szemerédi, E.3
-
8
-
-
18144366601
-
Some estimates of norms of random matrices
-
R. Latala, Some estimates of norms of random matrices, Proc Am Math Soc 133 (2005), 1273-1282.
-
(2005)
Proc Am Math Soc
, vol.133
, pp. 1273-1282
-
-
Latala, R.1
-
9
-
-
84892791688
-
Inverse Littlewood-Offord problems and the singularity of random symmetric matrices
-
in press).
-
H. Nguyen, Inverse Littlewood-Offord problems and the singularity of random symmetric matrices, Duke Math J (in press).
-
Duke Math J
-
-
Nguyen, H.1
-
10
-
-
84892820442
-
-
On the least singular value of random symmetric matrices, Submitted for Publication.
-
H. Nguyen, On the least singular value of random symmetric matrices, Submitted for Publication.
-
-
-
Nguyen, H.1
-
11
-
-
49649108303
-
Invertibility of random matrices: Norm of the inverse
-
M. Rudelson, Invertibility of random matrices: Norm of the inverse, Ann Math 168 (2008), 575-600.
-
(2008)
Ann Math
, vol.168
, pp. 575-600
-
-
Rudelson, M.1
-
12
-
-
41049114969
-
The Littlewood-Offord Problem and invertibility of random matrices
-
M. Rudelson and, R. Vershynin, The Littlewood-Offord Problem and invertibility of random matrices, Adv Math 218 (2008), 600-633.
-
(2008)
Adv Math
, vol.218
, pp. 600-633
-
-
Rudelson, M.1
Vershynin, R.2
-
13
-
-
76749128899
-
Smallest singular value of a random rectangular matrix
-
M. Rudelson and, R. Vershynin, Smallest singular value of a random rectangular matrix, Commun Pure Appl Math 62 (2009), 1707-1739.
-
(2009)
Commun Pure Appl Math
, vol.62
, pp. 1707-1739
-
-
Rudelson, M.1
Vershynin, R.2
-
15
-
-
0011260559
-
A correlation inequality for bipartite graphs
-
A. Sidorenko, A correlation inequality for bipartite graphs, Graphs Combin 9 1993, 201-204.
-
(1993)
Graphs Combin
, vol.9
, pp. 201-204
-
-
Sidorenko, A.1
-
16
-
-
33947248273
-
Additive combinatorics
-
Cambridge University Press, Cambridge
-
T. Tao and, V. Vu, Additive combinatorics, In Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006.
-
(2006)
Cambridge Studies in Advanced Mathematics, 105
-
-
Tao, T.1
Vu, V.2
-
17
-
-
68949196333
-
From the Littlewood-Offord problem to the Circular Law: Universality of the spectral distribution of random matrices
-
T. Tao and, V. Vu, From the Littlewood-Offord problem to the Circular Law: Universality of the spectral distribution of random matrices, Bull Am Math Soc 46 2009, 377-396.
-
(2009)
Bull Am Math Soc
, vol.46
, pp. 377-396
-
-
Tao, T.1
Vu, V.2
-
18
-
-
71849089047
-
Inverse Littlewood-Offord theorems and the condition number of random discrete matrices
-
T. Tao and, V. Vu, Inverse Littlewood-Offord theorems and the condition number of random discrete matrices, Ann Math 169 2009, 595-632.
-
(2009)
Ann Math
, vol.169
, pp. 595-632
-
-
Tao, T.1
Vu, V.2
-
19
-
-
77952883804
-
Random matrices: The distribution of the smallest singular values
-
T. Tao and, V. Vu, Random matrices: The distribution of the smallest singular values, Geom Funct Anal 20 2010, 260-297.
-
(2010)
Geom Funct Anal
, vol.20
, pp. 260-297
-
-
Tao, T.1
Vu, V.2
-
20
-
-
77954624704
-
Random matrices: Universality of local eigenvalue statistics up to the edge
-
T. Tao and, V. Vu, Random matrices: Universality of local eigenvalue statistics up to the edge, Comm Math Phys, 298 (2010), 549-572.
-
(2010)
Comm Math Phys
, vol.298
, pp. 549-572
-
-
Tao, T.1
Vu, V.2
-
21
-
-
79953112440
-
Random matrices: Universality of local eigenvalue statistics
-
T. Tao and, V. Vu, Random matrices: Universality of local eigenvalue statistics, Acta Math 206 (2011), 127-204.
-
(2011)
Acta Math
, vol.206
, pp. 127-204
-
-
Tao, T.1
Vu, V.2
-
22
-
-
84859116021
-
Random matrices: Localization of the eigenvalues and the necessity of four moments
-
T. Tao and V. Vu, Random matrices: Localization of the eigenvalues and the necessity of four moments, Acta Math Vietnam 36 (2011), 431-449.
-
(2011)
Acta Math Vietnam
, vol.36
, pp. 431-449
-
-
Tao, T.1
Vu, V.2
-
23
-
-
79952433487
-
Introduction to the non-asymptotic analysis of random matrices
-
Y. Eldar and G. Kutyniok (Editors), Cambridge University Press, in press.
-
R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, In Y. Eldar and G. Kutyniok (Editors), Compressed sensing: Theory and Applications, Cambridge University Press, in press.
-
Compressed sensing: Theory and Applications
-
-
Vershynin, R.1
|