-
1
-
-
84855696832
-
Improving the neighborhood selection strategy in simulated annealing using the optimal stopping problem
-
In: Tan, C.M. (ed.) Springer, New York
-
Alizamir, S., Rebennack, S., Pardalos, P.M.: Improving the neighborhood selection strategy in simulated annealing using the optimal stopping problem. In: Tan, C.M. (ed.) Simulated Annealing. Springer, New York, pp. 63-382 (2008)
-
(2008)
Simulated Annealing.
, pp. 63-382
-
-
Alizamir, S.1
Rebennack, S.2
Pardalos, P.M.3
-
4
-
-
84890245567
-
-
Wiley, New York
-
Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory And Algorithms. Wiley, New York (2006)
-
(2006)
Nonlinear Programming: Theory And Algorithms
-
-
Bazaraa, M.S.1
Sherali, H.D.2
Shetty, C.M.3
-
5
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
In: ACM
-
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144-152. ACM (1992)
-
(1992)
Proceedings of the Fifth Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
6
-
-
0030498362
-
Metropolis, simulated annealing and IET algorithms: Theory and experiments
-
Catoni, O.: Metropolis, simulated annealing and IET algorithms: Theory and experiments. J. Complex. 12, 595-623 (1996)
-
(1996)
J. Complex.
, vol.12
, pp. 595-623
-
-
Catoni, O.1
-
7
-
-
34249753618
-
Support-vector networks
-
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
8
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889-1918 (2005)
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1889-1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
10
-
-
0034850512
-
Face recognition with support vector machines: Global versus component-based approach
-
In: IEEE
-
Heisele, B., Ho, P., Poggio, T.: Face recognition with support vector machines: Global versus component-based approach. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. vol. 2, pp. 688-694. IEEE (2001)
-
(2001)
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001
, vol.2
, pp. 688-694
-
-
Heisele, B.1
Ho, P.2
Poggio, T.3
-
11
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornick, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359-366 (1989)
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornick, K.1
Stinchcombe, M.2
White, H.3
-
12
-
-
0036858347
-
Support vector machines for texture classification
-
Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support vector machines for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1542-1550 (2002)
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.11
, pp. 1542-1550
-
-
Kim, K.I.1
Jung, K.2
Park, S.H.3
Kim, H.J.4
-
13
-
-
26444479778
-
Optimization by simulated annealing
-
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671 (1983)
-
(1983)
Science
, vol.220
, Issue.4598
, pp. 671
-
-
Kirkpatrick, S.1
Gelatt, C.D.2
Vecchi, M.P.3
-
14
-
-
0022463446
-
Convergence of an annealing algorithm
-
Lundy, M., Mees, A.: Convergence of an annealing algorithm. Math. Progr. 34(1), 111-124 (1986)
-
(1986)
Math. Progr.
, vol.34
, Issue.1
, pp. 111-124
-
-
Lundy, M.1
Mees, A.2
-
15
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115-133 (1943)
-
(1943)
Bull. Math. Biol.
, vol.5
, Issue.4
, pp. 115-133
-
-
McCulloch, W.S.1
Pitts, W.2
-
16
-
-
0003496531
-
-
MIT Press, Cambridge
-
Mehrotra, K., Mohan, C.K., Ranka, S.: Elements of Artificial Neural Networks. MIT Press, Cambridge (1997)
-
(1997)
Elements of Artificial Neural Networks
-
-
Mehrotra, K.1
Mohan, C.K.2
Ranka, S.3
-
18
-
-
0003612091
-
-
Ellis Horwood, New York
-
Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York (1994)
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
-
20
-
-
21844500890
-
Parallel search for combinatorial optimization: Genetic algorithms, simulated annealing, tabu search and grasp
-
Wiley, Hoboken
-
Pardalos, P., Pitsoulis, L., Mavridou, T., Resende, M.: Parallel search for combinatorial optimization: Genetic algorithms, simulated annealing, tabu search and grasp. Parallel Algorithms for Irregularly Structured Problems, pp. 317-331. Wiley, Hoboken (1995)
-
(1995)
Parallel Algorithms for Irregularly Structured Problems
, pp. 317-331
-
-
Pardalos, P.1
Pitsoulis, L.2
Mavridou, T.3
Resende, M.4
-
21
-
-
57949111668
-
-
Springer, New York
-
Pardalos, P.M., Boginski, V.L., Vazacopoulos, A.: Data Mining in Biomedicine. Springer, New York (2007)
-
(2007)
Data Mining in Biomedicine
-
-
Pardalos, P.M.1
Boginski, V.L.2
Vazacopoulos, A.3
-
24
-
-
0000016172
-
A stochastic approximation method
-
Robbins, H., Monro, S.L.: A stochastic approximation method. Ann. Math. Stat. 22, 400-407 (1951)
-
(1951)
Ann. Math. Stat.
, vol.22
, pp. 400-407
-
-
Robbins, H.1
Monro, S.L.2
-
25
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)
-
(1958)
Psychol. Rev.
, vol.65
, Issue.6
, pp. 386
-
-
Rosenblatt, F.1
-
26
-
-
0020708088
-
Smoothed functionals in stochastic optimization
-
Rubinstein, R.Y.: Smoothed functionals in stochastic optimization. Math. Oper. Res., 26-33 (1983)
-
(1983)
Math. Oper. Res.
, pp. 26-33
-
-
Rubinstein, R.Y.1
-
27
-
-
33744538091
-
Generalized correlation function: Definition, properties, and application to blind equalization
-
Santamaría, I., Pokharel, P.P., Principe, J.C.: Generalized correlation function: Definition, properties, and application to blind equalization. IEEE Trans. Signal Process. 54(6), 2187-2197 (2006)
-
(2006)
IEEE Trans. Signal Process.
, vol.54
, Issue.6
, pp. 2187-2197
-
-
Santamaría, I.1
Pokharel, P.P.2
Principe, J.C.3
-
28
-
-
85118436573
-
Extracting support data for a given task
-
In: AAAI Press, Menlo Park
-
Schölkopf, B., Burges, C., Vapnik, V.: Extracting support data for a given task. In: Proceedings, First International Conference on Knowledge Discovery & Data Mining, pp. 252-257. AAAI Press, Menlo Park (1995)
-
(1995)
Proceedings, First International Conference on Knowledge Discovery & Data Mining
, pp. 252-257
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
30
-
-
0025244594
-
Experiments in nonconvex optimization: Stochastic approximation with function smoothing and simulated annealing
-
Styblinski, M.A., Tang, T.S.: Experiments in nonconvex optimization: stochastic approximation with function smoothing and simulated annealing. Neural Netw. 3(4), 467-483 (1990)
-
(1990)
Neural Netw.
, vol.3
, Issue.4
, pp. 467-483
-
-
Styblinski, M.A.1
Tang, T.S.2
-
32
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45-66 (2002)
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
33
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Vapnik, V., Golowich, S.E., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. Adv. Neural Inf. Process. Syst. 9, 281-287 (1996)
-
(1996)
Adv. Neural Inf. Process. Syst.
, vol.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.E.2
Smola, A.3
-
34
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988-999 (1999)
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
36
-
-
0003425673
-
-
Technical report, Technical Report CSD-TR-98-04, Department of Computer Science, University of London, Royal Holloway
-
Weston, J., Watkins, C.: Multi-class support vector machines. Technical report, Technical Report CSD-TR-98-04, Department of Computer Science, University of London, Royal Holloway (1998)
-
(1998)
Multi-class support vector machines
-
-
Weston, J.1
Watkins, C.2
-
37
-
-
84892713200
-
Minimum prediction error models and causal relations between multiple time series
-
In: Cochran, J.J. (ed.)
-
Zhang, J., Xanthopoulos, P., Chien, J., Tomaino, V., Pardalos, P.M.: Minimum prediction error models and causal relations between multiple time series. In: Cochran, J.J. (ed.) Wiley Encyclopedia of Operations Research and Management Science 3, 1843-1850 (2011)
-
(2011)
Wiley Encyclopedia of Operations Research and Management Science
, vol.3
, pp. 1843-1850
-
-
Zhang, J.1
Xanthopoulos, P.2
Chien, J.3
Tomaino, V.4
Pardalos, P.M.5
|