메뉴 건너뛰기




Volumn 20, Issue , 2012, Pages 81-117

Correntropy in data classification

Author keywords

Artificial neural networks; Convolution smoothing; Correntropy; Simulated annealing; Statisticalclassification; Support vector machines

Indexed keywords

CLASSIFICATION METHODS; CLASSIFICATION PERFORMANCE; CORRENTROPY; NONPARAMETRIC CLASSIFICATION; QUADRATIC LOSS FUNCTIONS; SIMULATED ANNEALING OPTIMIZATION; SOFT-MARGIN SUPPORT VECTOR MACHINES; STATISTICALCLASSIFICATION;

EID: 84892720780     PISSN: 21941009     EISSN: 21941017     Source Type: Conference Proceeding    
DOI: 10.1007/978-1-4614-3906-6_5     Document Type: Article
Times cited : (13)

References (37)
  • 1
    • 84855696832 scopus 로고    scopus 로고
    • Improving the neighborhood selection strategy in simulated annealing using the optimal stopping problem
    • In: Tan, C.M. (ed.) Springer, New York
    • Alizamir, S., Rebennack, S., Pardalos, P.M.: Improving the neighborhood selection strategy in simulated annealing using the optimal stopping problem. In: Tan, C.M. (ed.) Simulated Annealing. Springer, New York, pp. 63-382 (2008)
    • (2008) Simulated Annealing. , pp. 63-382
    • Alizamir, S.1    Rebennack, S.2    Pardalos, P.M.3
  • 6
    • 0030498362 scopus 로고    scopus 로고
    • Metropolis, simulated annealing and IET algorithms: Theory and experiments
    • Catoni, O.: Metropolis, simulated annealing and IET algorithms: Theory and experiments. J. Complex. 12, 595-623 (1996)
    • (1996) J. Complex. , vol.12 , pp. 595-623
    • Catoni, O.1
  • 7
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889-1918 (2005)
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornick, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359-366 (1989)
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671 (1983)
    • (1983) Science , vol.220 , Issue.4598 , pp. 671
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 14
    • 0022463446 scopus 로고
    • Convergence of an annealing algorithm
    • Lundy, M., Mees, A.: Convergence of an annealing algorithm. Math. Progr. 34(1), 111-124 (1986)
    • (1986) Math. Progr. , vol.34 , Issue.1 , pp. 111-124
    • Lundy, M.1    Mees, A.2
  • 15
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115-133 (1943)
    • (1943) Bull. Math. Biol. , vol.5 , Issue.4 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 20
    • 21844500890 scopus 로고
    • Parallel search for combinatorial optimization: Genetic algorithms, simulated annealing, tabu search and grasp
    • Wiley, Hoboken
    • Pardalos, P., Pitsoulis, L., Mavridou, T., Resende, M.: Parallel search for combinatorial optimization: Genetic algorithms, simulated annealing, tabu search and grasp. Parallel Algorithms for Irregularly Structured Problems, pp. 317-331. Wiley, Hoboken (1995)
    • (1995) Parallel Algorithms for Irregularly Structured Problems , pp. 317-331
    • Pardalos, P.1    Pitsoulis, L.2    Mavridou, T.3    Resende, M.4
  • 24
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins, H., Monro, S.L.: A stochastic approximation method. Ann. Math. Stat. 22, 400-407 (1951)
    • (1951) Ann. Math. Stat. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.L.2
  • 25
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)
    • (1958) Psychol. Rev. , vol.65 , Issue.6 , pp. 386
    • Rosenblatt, F.1
  • 26
    • 0020708088 scopus 로고
    • Smoothed functionals in stochastic optimization
    • Rubinstein, R.Y.: Smoothed functionals in stochastic optimization. Math. Oper. Res., 26-33 (1983)
    • (1983) Math. Oper. Res. , pp. 26-33
    • Rubinstein, R.Y.1
  • 27
    • 33744538091 scopus 로고    scopus 로고
    • Generalized correlation function: Definition, properties, and application to blind equalization
    • Santamaría, I., Pokharel, P.P., Principe, J.C.: Generalized correlation function: Definition, properties, and application to blind equalization. IEEE Trans. Signal Process. 54(6), 2187-2197 (2006)
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.6 , pp. 2187-2197
    • Santamaría, I.1    Pokharel, P.P.2    Principe, J.C.3
  • 30
    • 0025244594 scopus 로고
    • Experiments in nonconvex optimization: Stochastic approximation with function smoothing and simulated annealing
    • Styblinski, M.A., Tang, T.S.: Experiments in nonconvex optimization: stochastic approximation with function smoothing and simulated annealing. Neural Netw. 3(4), 467-483 (1990)
    • (1990) Neural Netw. , vol.3 , Issue.4 , pp. 467-483
    • Styblinski, M.A.1    Tang, T.S.2
  • 32
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45-66 (2002)
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 33
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik, V., Golowich, S.E., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. Adv. Neural Inf. Process. Syst. 9, 281-287 (1996)
    • (1996) Adv. Neural Inf. Process. Syst. , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 34
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988-999 (1999)
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 36
    • 0003425673 scopus 로고    scopus 로고
    • Technical report, Technical Report CSD-TR-98-04, Department of Computer Science, University of London, Royal Holloway
    • Weston, J., Watkins, C.: Multi-class support vector machines. Technical report, Technical Report CSD-TR-98-04, Department of Computer Science, University of London, Royal Holloway (1998)
    • (1998) Multi-class support vector machines
    • Weston, J.1    Watkins, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.